
Introduction
Convergence of sequences

Convergence of series
Sequences of functions

Power series
The Logarithm

Complex power series: an example
The complex logarithm

K. P. Hart

Faculty EEMCS
TU Delft

Delft, 29 januari, 2007

K. P. Hart Complex power series: an example



Introduction
Convergence of sequences

Convergence of series
Sequences of functions

Power series
The Logarithm

Purpose of this lecture

Recall notions about convergence of real sequences and series

Introduce these notions for complex sequences and series

Illustrate these using the Taylor series of Log(1 + z)

A readable version of these slides can be found via

http://fa.its.tudelft.nl/~hart
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The definition

Definition

The sequence {xn} converges to the real number x , in symbols,

lim
n→∞

xn = x

means: for every positive ε there is a natural number N such that
for all n > N one has |xn − x | < ε.

K. P. Hart Complex power series: an example
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Well-known examples

The following should be well-known:

limn→∞
1
n = 0

more generally limn→∞
1
np = 0 when p > 0.

limn→∞ xn = 0 if |x | < 1

K. P. Hart Complex power series: an example
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A useful example

We show limn→∞ n
√

n = 1.

Note n
√

n > 1, so an = n
√

n − 1 is positive.

Apply the binomial formula:

n = (1 + an)
n =

n∑
k=0

(
n

k

)
ak
n = 1 + nan +

1

2
n(n − 1)a2

n + · · ·

we drop all terms but the second . . .

K. P. Hart Complex power series: an example
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A useful example

. . . and we find n > 1
2n(n − 1)a2

n, and hence a2
n 6 2

n−1 .

Take square roots: 0 < an <
√

2√
n−1

.

By the Squeeze Law: limn→∞ an = 0.
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Definition

The definition is identical (modulus replaces absolute value).

Definition

The sequence {zn} converges to the complex number z , in
symbols,

lim
n→∞

zn = z

means: for every positive ε there is a natural number N such that
for all n > N one has |zn − z | < ε.

K. P. Hart Complex power series: an example
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Example: zn

If z ∈ C then

limn→∞ zn = 0 if |z | < 1

limn→∞ zn does not exist if |z | = 1 and z 6= 1

limn→∞ zn = ∞ if |z | > 1

limn→∞ zn = ∞ means: for every positive M there is a natural
number N such that for all n > N one has |zn| > M.

Oh yes: limn→∞ 1n = 1.

K. P. Hart Complex power series: an example
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Series

Given a sequence {zn} what does (or should)

z0 + z1 + z2 + z3 + · · ·

mean?
Make a new sequence {sn} of partial sums:

sn =
∑
k6n

zk

K. P. Hart Complex power series: an example
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Convergence

If σ = limn sn exists then we say that the series
∑

zn converges
and we write σ =

∑
n zn.

Thus we give a meaning to z0 + z1 + z2 + z3 + · · · :

the limit (if it exists) of the sequence of partial sums.

This definition works for real and complex sequences alike.

K. P. Hart Complex power series: an example
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Geometric series

Fix z and consider 1 + z + z2 + z3 + · · · (so zn = zn).

The partial sums can be calculated explicitly:

sn = 1 + z + · · ·+ zn =
1− zn+1

1− z
(z 6= 1)

for z = 1 we have sn = n + 1.

K. P. Hart Complex power series: an example
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Geometric series

The limit of the sequence of partial sums is easily found, in most
cases:

|z | < 1:
∑

n zn = 1
1−z

|z | > 1:
∑

n zn = ∞ also if z = 1

K. P. Hart Complex power series: an example
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if |z | = 1 and z 6= 1 then the limit does not exist but we do have

|sn| 6
2

|1− z |

so for each individual z the partial sums are bounded

the bound is also valid if |z | < 1.

K. P. Hart Complex power series: an example
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Further examples

∑
n

1
n = ∞ (even though limn

1
n = 0)∑

n
(−1)n+1

n = ln 2 (as we shall see later)∑
n

1
n2 = π2

6 (Euler)∑
n

1
n! = e∑

n
1
np converges iff p > 1

K. P. Hart Complex power series: an example
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Absolute convergence

Absolute convergence:
∑

n |zn| converges.

Absolute convergence implies convergence
(but not necessarily conversely).∑

n
(−1)n

n converges but
∑

n
1
n does not

We shall see:
∑

n
zn

n converges for all z with |z | = 1 and z 6= 1.

K. P. Hart Complex power series: an example
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Comparison test

comparison if |zn| 6 an for all n
and

∑
n an converges

then
∑

n zn converges absolutely

K. P. Hart Complex power series: an example
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Pointwise convergence

A sequence {fn} of functions converges to a function f (on some
domain) if for each individual z in the domain one has

lim
n→∞

fn(z) = f (z)

Standard example: fn(z) = zn on D = {z : |z | < 1}.
We know limn fn(z) = 0 for all z ∈ D, so {fn} converges to the
zero function.

K. P. Hart Complex power series: an example
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Uniform convergence

fn(z) → f (z) uniformly if for every ε > 0 there is an N(ε) such
that for all n > N(ε) we have∣∣fn(z)− f (z)

∣∣ < ε

for all z in the domain.

Important fact: if fn → f uniformly and each fn is continuous then
so is f .

K. P. Hart Complex power series: an example
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Uniform convergence: standard example

We have zn → 0 on D but not uniformly: let ε = 1
2 ,

for every n let zn = n

√
1
2 then |fn(zn)− f (zn)| = 1

2 .

Let r < 1 and consider Dr = {z : |z | < r};
then zn → 0 uniformly on Dr .

Given ε > 0, take N such that rN < ε, then for n > N and all
z ∈ Dr we have

|zn| 6 rn 6 rN < ε

K. P. Hart Complex power series: an example
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Uniform convergence: standard example

∑∞
n=0 zn = 1

1−z for each z ∈ D but not uniformly:

n∑
k=0

zk − 1

1− z
=

∞∑
k=n+1

zk =
zn+1

1− z

For each individual n this difference is unbounded.

K. P. Hart Complex power series: an example
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Uniform convergence: standard example

On a smaller disk Dr we have∣∣∣∣∣
n∑

k=0

zk − 1

1− z

∣∣∣∣∣ =

∣∣∣∣ zn+1

1− z

∣∣∣∣ 6
rn+1

1− r

So, on Dr the series does converge uniformly.

K. P. Hart Complex power series: an example
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Uniform convergence: M-test

Very useful test: if there is a convergent series
∑

n Mn such that

|fn(z)| 6 Mn

for all z in the domain, then
∑

n fn converges absolutely and
uniformly on the domain.

Previous example: |zn| 6 rn for all z ∈ Dr .

K. P. Hart Complex power series: an example
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Power series

Special form: a fixed number z0 and a sequence {an} of numbers
are given. Put fn(z) = an(z − z0)

n, we write

∞∑
n=0

an(z − z0)
n

for the resulting series.

K. P. Hart Complex power series: an example
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Radius of convergence

Important fact:
if limn an(w − z0)

n = 0 for some w then
∑

n an(z − z0) converges
absolutely whenever |z − z0| < |w − z0|.

Use comparison test:
first fix N such that |an(w − z0)

n| 6 1 for n > N.
Then ∣∣an(z − z0)

n
∣∣ = ∣∣∣∣an(w − z0)

n

(
z − z0

w − z0

)n∣∣∣∣ 6

∣∣∣∣ z − z0

w − z0

∣∣∣∣n
Geometric series with r < 1.

K. P. Hart Complex power series: an example
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Radius of convergence

Even better: if r < |w − z0| then the power series converges
uniformly on the disc

D(z0, r) = {z : |z − z0| 6 r}

Same proof gives

∣∣an(z − z0)
n
∣∣ 6 ( r

|w − z0|

)n

for all z in the disc, apply the M-test.

K. P. Hart Complex power series: an example
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Radius of convergence

Theorem

Given a power series
∑

n an(z − z0)
n there is an R such that∑

n an(z − z0)
n converges if |z − z0| < R∑

n an(z − z0)
n diverges if |z − z0| > R

In addition: if r < R then the series converges uniformly on
{z : |z − z0| 6 r}.

On the boundary — |z − z0| = R — anything can happen.

R = 0, 0 < R < ∞ and R = ∞ are all possible.

R is the radius of convergence of the series.

K. P. Hart Complex power series: an example
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Examples

∑
n zn: R = 1∑
n

1
nzn: R = 1∑

n nzn: R = 1∑
n

1
n!z

n: R = ∞∑
n nnzn: R = 0

In each case consider limn anz
n for various z .

K. P. Hart Complex power series: an example
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On the boundary

The series
∑

n zn and
∑

n nzn both have radius 1.

What happens when |z | = 1?

The series diverges for all such z
as neither limn zn nor limn nzn is ever zero.

K. P. Hart Complex power series: an example
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On the boundary

The series
∑

n
1
nzn has radius 1.

What happens when |z | = 1?

That depends on z .

For z = 1 we have divergence:
∑∞

n=1
1
n = ∞.

Remember:
∑2k

n=1
1
n > 1 + 1

2k for all k

K. P. Hart Complex power series: an example
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On the boundary

The series
∑

n
1
nzn has radius 1.

What happens when |z | = 1 and z 6= 1?

The series converges.

This will require some work.

K. P. Hart Complex power series: an example
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Summation by parts

Remember integration by parts:
∫

fg = Fg −
∫

Fg ′.

The same can be done for sums: let {an} and {bn} be two
sequences. We find a similar formula for

∑l
n=k anbn.

The integral is replaced by the sequence of partial sums:
An =

∑n
k=0 ak (and A−1 = 0).

The derivative is replaced by the sequence of differences:
{bn+1 − bn}

K. P. Hart Complex power series: an example
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Summation by parts

The formula becomes

l∑
n=k

anbn = Albl − Ak−1bk −
l−1∑
n=k

An(bn+1 − bn)

The proof consists of some straightforward manipulation.

We use this with an = zn and bn = 1
n , so An = 1−zn+1

1−z

K. P. Hart Complex power series: an example
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Back to the boundary

Fix some k and let l > k be arbitrary.∣∣∣∣∣
l∑

n=k

1

n
zn

∣∣∣∣∣ =
∣∣∣∣∣Al

1

l
− Ak−1

1

k
−

l−1∑
n=k

An

( 1

n + 1
− 1

n

)∣∣∣∣∣
6

2

|1− z |

(
1

l
+

1

k
+

l−1∑
n=k

(1

n
− 1

n + 1

))

=
2

|1− z |
2

k

This holds for all l , so . . .

K. P. Hart Complex power series: an example
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Back to the boundary

. . . the partial sums
∑k

n=1
1
nzn form a Cauchy-sequence.

The completeness of the complex plane ensures that

∞∑
n=1

1

n
zn = lim

k→∞

k∑
n=1

1

n
zn

exists. We denote the sum, for now, by σ(z).

The series converges for all z with |z | 6 1 and z 6= 1.

K. P. Hart Complex power series: an example
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Uniform convergence

The inequality ∣∣∣∣∣
l∑

n=k

1

n
zn

∣∣∣∣∣ 6
4

k|1− z |

holds for every z with |z | 6 1 and z 6= 1.

This implies uniform convergence on sets of the form

Er = {z : |z | 6 1, |1− z | > r}

K. P. Hart Complex power series: an example
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Uniform convergence

For z ∈ Er we have∣∣∣∣∣σ(z)−
k∑

n=1

1

n
zn

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=k+1

1

n
zn

∣∣∣∣∣ 6
4

(k + 1)|1− z |
6

4

(k + 1)r

Now, given ε > 0 we take n so large that 4
(N+1)r < ε.

Then
∣∣∣σ(z)−

∑k
n=1

1
nzn
∣∣∣ < ε whenever k > N and z ∈ Er .

K. P. Hart Complex power series: an example
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Integrating the geometric series

We know
∞∑

n=0

zn =
1

1− z
(|z | < 1)

We also know

1

1− z
=

k∑
n=0

zn +
zk+1

1− z

Integrate this along the straight line L from 0 to z :

− Log(1− z) =
k∑

n=0

1

n + 1
zn+1 +

∫
L

wk+1

1− w
dw

K. P. Hart Complex power series: an example



Introduction
Convergence of sequences

Convergence of series
Sequences of functions

Power series
The Logarithm

Integration
Values on the boundary

Integrating the geometric series

We can find an (easy) upper bound for the absolute value of the
integral: ∣∣∣∣∫

L

wk+1

1− w
dw

∣∣∣∣ 6 |z | × |z |k+1

1− |z |
=
|z |k+2

1− |z |

Thus

lim
k→∞

∫
L

wk+1

1− w
dw = 0

and so . . .

K. P. Hart Complex power series: an example
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Integrating the geometric series

. . . we obtain
∞∑

n=1

1

n
zn = − Log(1− z) (|z | < 1)

but, by continuity of the sum function σ(z) and the Logarithm this
formula holds when |z | = 1 and z 6= 1 as well.

Often z is replaced by −z and an extra minus sign is added to give

∞∑
n=1

(−1)n+1

n
zn = Log(1 + z) (|z | 6 1, z 6= −1)

K. P. Hart Complex power series: an example
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ln 2

As promised:
∞∑

n=1

(−1)n

n
= − Log 2 = − ln 2

(use z = −1) or, with an extra minus sign:

∞∑
n=1

(−1)n+1

n
= ln 2

this is also written

1− 1

2
+

1

3
− 1

4
+

1

5
− · · · = ln 2

K. P. Hart Complex power series: an example
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Rest of the boundary

If z = e iθ, with θ 6= 2kπ, then

∞∑
n=1

1

n
e inθ = − Log(1− e iθ) = − ln |1− e iθ| − i Arg(1− e iθ)

If we split the series and its sum into their respective real and
imaginary parts we get two nice formulas.

K. P. Hart Complex power series: an example
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Real part

Note

|1− e iθ|2 = (1− e iθ)(1− e−iθ) = 2− 2 cos θ = 4 sin2 1

2
θ

So that − ln |1− e iθ| = − ln
(
2| sin 1

2θ|
)

and we get

∞∑
n=1

cos nθ

n
= − ln

(
2| sin 1

2
θ|
)

K. P. Hart Complex power series: an example
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Imaginary part

To see what ϕ = −Arg(1− e iθ) is draw a picture

e iθ

1− e iθ

ϕ

K. P. Hart Complex power series: an example
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Imaginary part

We have 1− e iθ = (1− cos θ)− i sin θ, so that if 0 < θ < π we get

tanϕ =
sin θ

1− cos θ
=

2 sin 1
2θ cos 1

2θ

2 sin2 1
2θ

=
cos 1

2θ

sin 1
2θ

= tan(
1

2
π − 1

2
θ)

If 0 < θ < π then ϕ and 1
2π − 1

2θ lie between 0 and 1
2π so that

ϕ =
1

2
π − 1

2
θ

K. P. Hart Complex power series: an example
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Imaginary part

We find
∞∑

n=1

sin nθ

n
=

1

2
π − 1

2
θ (0 < θ < π)

The sum must be an odd function so

∞∑
n=1

sin nθ

n
= −1

2
π − 1

2
θ (−π < θ < 0)

K. P. Hart Complex power series: an example
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