Complex power series: an example The complex logarithm

K. P. Hart

Faculty EEMCS TU Delft

Delft, 29 januari, 2007

Purpose of this lecture

- Recall notions about convergence of real sequences and series
- Introduce these notions for complex sequences and series
- Illustrate these using the Taylor series of Log(1 + z)

A readable version of these slides can be found via

http://fa.its.tudelft.nl/~hart

Definition Examples Complex sequences

The definition

Definition

The sequence $\{x_n\}$ converges to the real number x, in symbols,

$$\lim_{n\to\infty}x_n=x$$

means: for every positive ϵ there is a natural number N such that for all $n \ge N$ one has $|x_n - x| < \epsilon$.

Definition E<mark>xamples</mark> Complex sequences

Well-known examples

The following should be well-known:

•
$$\lim_{n\to\infty}\frac{1}{n}=0$$

• more generally $\lim_{n\to\infty} \frac{1}{n^p} = 0$ when p > 0.

•
$$\lim_{n\to\infty} x^n = 0$$
 if $|x| < 1$

Definition Examples Complex sequences

A useful example

We show $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Note $\sqrt[n]{n} > 1$, so $a_n = \sqrt[n]{n} - 1$ is positive.

Apply the binomial formula:

$$n = (1 + a_n)^n = \sum_{k=0}^n {n \choose k} a_n^k = 1 + na_n + \frac{1}{2}n(n-1)a_n^2 + \cdots$$

we drop all terms but the second ...

Definition <mark>Examples</mark> Complex sequences

A useful example

... and we find
$$n \ge \frac{1}{2}n(n-1)a_n^2$$
, and hence $a_n^2 \le \frac{2}{n-1}$.

Take square roots:
$$0 < a_n < \frac{\sqrt{2}}{\sqrt{n-1}}$$
.

By the Squeeze Law: $\lim_{n\to\infty} a_n = 0$.

Definition Examples Complex sequences

Definition

The definition is identical (modulus replaces absolute value).

Definition

The sequence $\{z_n\}$ converges to the complex number z, in symbols,

$$\lim_{n\to\infty} z_n = z$$

means: for every positive ϵ there is a natural number N such that for all $n \ge N$ one has $|z_n - z| < \epsilon$.

Definition Examples Complex sequences

Example: z^n

If $z \in \mathbb{C}$ then

- $\lim_{n\to\infty} z^n = 0$ if |z| < 1
- $\lim_{n\to\infty} z^n$ does not exist if |z|=1 and $z\neq 1$

•
$$\lim_{n\to\infty} z^n = \infty$$
 if $|z| > 1$

 $\lim_{n\to\infty} z_n = \infty$ means: for every positive M there is a natural number N such that for all $n \ge N$ one has $|z_n| > M$.

Oh yes: $\lim_{n\to\infty} 1^n = 1$.

Important example Absolute convergence

Series

Given a sequence $\{z_n\}$ what does (or should)

 $z_0+z_1+z_2+z_3+\cdots$

mean?

Make a new sequence $\{s_n\}$ of *partial sums*:

$$s_n = \sum_{k \leqslant n} z_k$$

Important example Absolute convergence

Convergence

If $\sigma = \lim_{n \to \infty} s_n$ exists then we say that the series $\sum z_n$ converges and we write $\sigma = \sum_n z_n$.

Thus we give a meaning to $z_0 + z_1 + z_2 + z_3 + \cdots$:

the limit (if it exists) of the sequence of partial sums.

This definition works for real and complex sequences alike.

<mark>Important example</mark> Absolute convergence

Geometric series

Fix z and consider
$$1 + z + z^2 + z^3 + \cdots$$
 (so $z_n = z^n$).

The partial sums can be calculated explicitly:

$$s_n = 1 + z + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$$
 $(z \neq 1)$

for z = 1 we have $s_n = n + 1$.

I<mark>mportant example</mark> Absolute convergence

Geometric series

The limit of the sequence of partial sums is easily found, in most cases:

•
$$|z| < 1$$
: $\sum_{n} z^{n} = \frac{1}{1-z}$
• $|z| > 1$: $\sum_{n} z^{n} = \infty$ also if $z = 1$

<mark>Important example</mark> Absolute convergence

Geometric series

if |z| = 1 and $z \neq 1$ then the limit does not exist but we do have

$$|s_n| \leq \frac{2}{|1-z|}$$

so for each individual z the partial sums are bounded

the bound is also valid if |z| < 1.

I<mark>mportant example</mark> Absolute convergence

Further examples

•
$$\sum_{n} \frac{1}{n} = \infty$$
 (even though $\lim_{n} \frac{1}{n} = 0$)
• $\sum_{n} \frac{(-1)^{n+1}}{n} = \ln 2$ (as we shall see later)
• $\sum_{n} \frac{1}{n^2} = \frac{\pi^2}{6}$ (Euler)
• $\sum_{n} \frac{1}{n!} = e$
• $\sum_{n} \frac{1}{n^p}$ converges iff $p > 1$

Important example Absolute convergence

Absolute convergence

Absolute convergence: $\sum_{n} |z_n|$ converges.

Absolute convergence implies convergence (but not necessarily conversely).

$$\sum_{n} \frac{(-1)^{n}}{n}$$
 converges but $\sum_{n} \frac{1}{n}$ does not

We shall see: $\sum_{n \in \mathbb{Z}^n} \frac{z^n}{n}$ converges for all z with |z| = 1 and $z \neq 1$.

Important example Absolute convergence

Comparison test

 $\begin{array}{ll} \text{comparison} & \text{if } |z_n| \leqslant a_n \text{ for all } n \\ & \text{and } \sum_n a_n \text{ converges} \\ & \text{then } \sum_n z_n \text{ converges absolutely} \end{array}$

Pointwise convergence Uniform convergence

Pointwise convergence

A sequence $\{f_n\}$ of functions converges to a function f (on some domain) if for each individual z in the domain one has

$$\lim_{n\to\infty}f_n(z)=f(z)$$

Standard example: $f_n(z) = z^n$ on $D = \{z : |z| < 1\}$. We know $\lim_n f_n(z) = 0$ for all $z \in D$, so $\{f_n\}$ converges to the zero function.

Pointwise convergence Uniform convergence

Uniform convergence

 $f_n(z) \to f(z)$ uniformly if for every $\epsilon > 0$ there is an $N(\epsilon)$ such that for all $n \ge N(\epsilon)$ we have

$$\left|f_n(z)-f(z)\right|<\epsilon$$

for all z in the domain.

Important fact: if $f_n \rightarrow f$ uniformly and each f_n is continuous then so is f.

Pointwise convergence Uniform convergence

Uniform convergence: standard example

We have
$$z^n \to 0$$
 on D but not uniformly: let $\epsilon = \frac{1}{2}$,
for every n let $z_n = \sqrt[n]{\frac{1}{2}}$ then $|f_n(z_n) - f(z_n)| = \frac{1}{2}$.

Let r < 1 and consider $D_r = \{z : |z| < r\}$; then $z^n \to 0$ uniformly on D_r . Given $\epsilon > 0$, take N such that $r^N < \epsilon$, then for $n \ge N$ and all $z \in D_r$ we have

$$|z^n| \leqslant r^n \leqslant r^N < \epsilon$$

Pointwise convergence Uniform convergence

Uniform convergence: standard example

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$
 for each $z \in D$ but not uniformly:

$$\sum_{k=0}^{n} z^{k} - \frac{1}{1-z} = \sum_{k=n+1}^{\infty} z^{k} = \frac{z^{n+1}}{1-z}$$

For each individual n this difference is unbounded.

Pointwise convergence Uniform convergence

Uniform convergence: standard example

On a smaller disk D_r we have

$$\left|\sum_{k=0}^{n} z^{k} - \frac{1}{1-z}\right| = \left|\frac{z^{n+1}}{1-z}\right| \leqslant \frac{r^{n+1}}{1-r}$$

So, on D_r the series does converge *uniformly*.

Pointwise convergence Uniform convergence

Uniform convergence: *M*-test

Very useful test: if there is a convergent series $\sum_{n} M_{n}$ such that

 $|f_n(z)| \leq M_n$

for all z in the domain, then $\sum_n f_n$ converges absolutely and uniformly on the domain.

Previous example: $|z^n| \leq r^n$ for all $z \in D_r$.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Power series

Special form: a fixed number z_0 and a sequence $\{a_n\}$ of numbers are given. Put $f_n(z) = a_n(z - z_0)^n$, we write

$$\sum_{n=0}^{\infty}a_n(z-z_0)^n$$

for the resulting series.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Radius of convergence

Important fact: if $\lim_{n} a_n (w - z_0)^n = 0$ for some w then $\sum_{n} a_n (z - z_0)$ converges absolutely whenever $|z - z_0| < |w - z_0|$.

Use comparison test: first fix N such that $|a_n(w - z_0)^n| \leq 1$ for $n \geq N$. Then

$$\left|a_n(z-z_0)^n\right| = \left|a_n(w-z_0)^n\left(\frac{z-z_0}{w-z_0}\right)^n\right| \leq \left|\frac{z-z_0}{w-z_0}\right|^n$$

Geometric series with r < 1.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Radius of convergence

Even better: if $r < |w - z_0|$ then the power series converges *uniformly* on the disc

$$D(z_0,r) = \{z : |z-z_0| \leqslant r\}$$

Same proof gives

$$\left|a_{n}(z-z_{0})^{n}\right| \leqslant \left(\frac{r}{\left|w-z_{0}\right|}\right)^{n}$$

for all z in the disc, apply the M-test.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Radius of convergence

Theorem

Given a power series $\sum_{n} a_n (z - z_0)^n$ there is an R such that

•
$$\sum_{n} a_n (z - z_0)^n$$
 converges if $|z - z_0| < R$

•
$$\sum_{n} a_n (z-z_0)^n$$
 diverges if $|z-z_0| > R$

In addition: if r < R then the series converges uniformly on $\{z : |z - z_0| \leq r\}.$

- On the boundary $|z z_0| = R$ anything can happen.
- R = 0, $0 < R < \infty$ and $R = \infty$ are all possible.

R is the radius of convergence of the series.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Examples

•
$$\sum_{n} z^{n}$$
: $R = 1$
• $\sum_{n} \frac{1}{n} z^{n}$: $R = 1$
• $\sum_{n} nz^{n}$: $R = 1$
• $\sum_{n} \frac{1}{n!} z^{n}$: $R = \infty$
• $\sum_{n} n^{n} z^{n}$: $R = 0$

In each case consider $\lim_{n} a_n z^n$ for various z.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

On the boundary

The series $\sum_{n} z^{n}$ and $\sum_{n} nz^{n}$ both have radius 1.

What happens when |z| = 1?

The series diverges for all such z as neither $\lim_{n} z^{n}$ nor $\lim_{n} nz^{n}$ is ever zero.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

On the boundary

The series
$$\sum_{n} \frac{1}{n} z^{n}$$
 has radius 1.

What happens when |z| = 1?

That depends on z.

For z = 1 we have divergence: $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$.

Remember: $\sum_{n=1}^{2^k} \frac{1}{n} > 1 + \frac{1}{2}k$ for all k

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

On the boundary

The series $\sum_{n} \frac{1}{n} z^{n}$ has radius 1.

What happens when |z| = 1 and $z \neq 1$?

The series converges.

This will require some work.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Summation by parts

Remember integration by parts: $\int fg = Fg - \int Fg'$.

The same can be done for sums: let $\{a_n\}$ and $\{b_n\}$ be two sequences. We find a similar formula for $\sum_{n=k}^{l} a_n b_n$.

The integral is replaced by the sequence of partial sums: $A_n = \sum_{k=0}^n a_k$ (and $A_{-1} = 0$).

The derivative is replaced by the sequence of differences: $\{b_{n+1} - b_n\}$

Radius of convergence Boundary behaviour **Summation by parts** Back to the boundary

Summation by parts

The formula becomes

$$\sum_{n=k}^{l} a_n b_n = A_l b_l - A_{k-1} b_k - \sum_{n=k}^{l-1} A_n (b_{n+1} - b_n)$$

The proof consists of some straightforward manipulation.

We use this with
$$a_n = z^n$$
 and $b_n = \frac{1}{n}$, so $A_n = \frac{1-z^{n+1}}{1-z}$

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Back to the boundary

Fix some k and let l > k be arbitrary.

$$\begin{vmatrix} \sum_{n=k}^{l} \frac{1}{n} z^{n} \end{vmatrix} = \begin{vmatrix} A_{l} \frac{1}{l} - A_{k-1} \frac{1}{k} - \sum_{n=k}^{l-1} A_{n} \left(\frac{1}{n+1} - \frac{1}{n} \right) \\ \leqslant \frac{2}{|1-z|} \left(\frac{1}{l} + \frac{1}{k} + \sum_{n=k}^{l-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) \right) \\ = \frac{2}{|1-z|} \frac{2}{k} \end{aligned}$$

This holds for all *I*, so ...

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Back to the boundary

... the partial sums $\sum_{n=1}^{k} \frac{1}{n} z^n$ form a Cauchy-sequence.

The completeness of the complex plane ensures that

$$\sum_{n=1}^{\infty} \frac{1}{n} z^n = \lim_{k \to \infty} \sum_{n=1}^{k} \frac{1}{n} z^n$$

exists. We denote the sum, for now, by $\sigma(z)$.

The series converges for all z with $|z| \leq 1$ and $z \neq 1$.

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Uniform convergence

The inequality

$$\left|\sum_{n=k}^{l} \frac{1}{n} z^{n}\right| \leqslant \frac{4}{k|1-z|}$$

holds for every z with $|z| \leq 1$ and $z \neq 1$.

This implies uniform convergence on sets of the form

$$E_r = \{z : |z| \leq 1, |1-z| \geq r\}$$

Radius of convergence Boundary behaviour Summation by parts Back to the boundary

Uniform convergence

For $z \in E_r$ we have

$$\left|\sigma(z) - \sum_{n=1}^{k} \frac{1}{n} z^{n}\right| = \left|\sum_{n=k+1}^{\infty} \frac{1}{n} z^{n}\right| \leq \frac{4}{(k+1)|1-z|} \leq \frac{4}{(k+1)r}$$

Now, given $\epsilon > 0$ we take *n* so large that $\frac{4}{(N+1)r} < \epsilon$.

Then
$$\left|\sigma(z)-\sum_{n=1}^krac{1}{n}z^n
ight|<\epsilon$$
 whenever $k\geqslant N$ and $z\in E_r$.

Integration Values on the boundary

Integrating the geometric series

We know

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \qquad (|z|<1)$$

We also know

$$\frac{1}{1-z} = \sum_{n=0}^{k} z^n + \frac{z^{k+1}}{1-z}$$

Integrate this along the straight line L from 0 to z:

$$-\log(1-z) = \sum_{n=0}^{k} \frac{1}{n+1} z^{n+1} + \int_{L} \frac{w^{k+1}}{1-w} \, \mathrm{d}w$$

Integration Values on the boundary

Integrating the geometric series

We can find an (easy) upper bound for the absolute value of the integral:

$$\left|\int_{L} \frac{w^{k+1}}{1-w} \,\mathrm{d}w\right| \leqslant |z| \times \frac{|z|^{k+1}}{1-|z|} = \frac{|z|^{k+2}}{1-|z|}$$

Thus

$$\lim_{k\to\infty}\int_L \frac{w^{k+1}}{1-w}\,\mathrm{d}w=0$$

and so . . .

Integration Values on the boundary

Integrating the geometric series

... we obtain

$$\sum_{n=1}^{\infty}\frac{1}{n}z^n=-\log(1-z) \qquad \qquad (|z|<1)$$

but, by continuity of the sum function $\sigma(z)$ and the Logarithm this formula holds when |z| = 1 and $z \neq 1$ as well.

Often z is replaced by -z and an extra minus sign is added to give

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n = \operatorname{Log}(1+z) \qquad (|z| \leq 1, z \neq -1)$$

Delft University of Technology

 $\ln 2$

As promised:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -\log 2 = -\ln 2$$

(use z = -1) or, with an extra minus sign:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$$

this is also written

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots = \ln 2$$

Integration Values on the boundary

Rest of the boundary

If
$$z = e^{i\theta}$$
, with $\theta \neq 2k\pi$, then

$$\sum_{n=1}^{\infty} \frac{1}{n} e^{in\theta} = -\log(1-e^{i\theta}) = -\ln|1-e^{i\theta}| - i\operatorname{Arg}(1-e^{i\theta})$$

If we split the series and its sum into their respective real and imaginary parts we get two nice formulas.

Integration Values on the boundary

Real part

Note

$$|1 - e^{i\theta}|^2 = (1 - e^{i\theta})(1 - e^{-i\theta}) = 2 - 2\cos\theta = 4\sin^2\frac{1}{2}\theta$$

So that $-\ln|1-e^{i\theta}|=-\ln\bigl(2|\sin\frac{1}{2}\theta|\bigr)$ and we get

$$\sum_{n=1}^{\infty} \frac{\cos n\theta}{n} = -\ln\left(2|\sin\frac{1}{2}\theta|\right)$$

Imaginary part

To see what $\varphi = -\operatorname{Arg}(1 - e^{i\theta})$ is draw a picture

Integration Values on the boundary

Imaginary part

We have
$$1 - e^{i\theta} = (1 - \cos \theta) - i \sin \theta$$
, so that if $0 < \theta < \pi$ we get

$$\tan \varphi = \frac{\sin \theta}{1 - \cos \theta} = \frac{2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin^2 \frac{1}{2} \theta} = \frac{\cos \frac{1}{2} \theta}{\sin \frac{1}{2} \theta} = \tan(\frac{1}{2} \pi - \frac{1}{2} \theta)$$

If $0 < \theta < \pi$ then φ and $\frac{1}{2}\pi - \frac{1}{2}\theta$ lie between 0 and $\frac{1}{2}\pi$ so that

$$\varphi = \frac{1}{2}\pi - \frac{1}{2}\theta$$

Integration Values on the boundary

Imaginary part

We find

$$\sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \frac{1}{2}\pi - \frac{1}{2}\theta$$

$$(0 < heta < \pi)$$

The sum must be an odd function so

$$\sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = -\frac{1}{2}\pi - \frac{1}{2}\theta \qquad (-\pi < \theta < 0)$$

