Complex power series: an example The complex logarithm

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 29 januari, 2007

Purpose of this lecture

- Recall notions about convergence of real sequences and series
- Introduce these notions for complex sequences and series
- Illustrate these using the Taylor series of $\log (1+z)$

A readable version of these slides can be found via
http://fa.its.tudelft.nl/~hart

The definition

Definition

The sequence $\left\{x_{n}\right\}$ converges to the real number x, in symbols,

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

means: for every positive ϵ there is a natural number N such that for all $n \geqslant N$ one has $\left|x_{n}-x\right|<\epsilon$.

Well-known examples

The following should be well-known:

- $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
- more generally $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$ when $p>0$.
- $\lim _{n \rightarrow \infty} x^{n}=0$ if $|x|<1$

A useful example

We show $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
Note $\sqrt[n]{n}>1$, so $a_{n}=\sqrt[n]{n}-1$ is positive.
Apply the binomial formula:

$$
n=\left(1+a_{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n}^{k}=1+n a_{n}+\frac{1}{2} n(n-1) a_{n}^{2}+\cdots
$$

we drop all terms but the second ...

A useful example

\ldots and we find $n \geqslant \frac{1}{2} n(n-1) a_{n}^{2}$, and hence $a_{n}^{2} \leqslant \frac{2}{n-1}$.
Take square roots: $0<a_{n}<\frac{\sqrt{2}}{\sqrt{n-1}}$.
By the Squeeze Law: $\lim _{n \rightarrow \infty} a_{n}=0$.

Definition

The definition is identical (modulus replaces absolute value).

Definition

The sequence $\left\{z_{n}\right\}$ converges to the complex number z, in symbols,

$$
\lim _{n \rightarrow \infty} z_{n}=z
$$

means: for every positive ϵ there is a natural number N such that for all $n \geqslant N$ one has $\left|z_{n}-z\right|<\epsilon$.

Example: z^{n}

If $z \in \mathbb{C}$ then

- $\lim _{n \rightarrow \infty} z^{n}=0$ if $|z|<1$
- $\lim _{n \rightarrow \infty} z^{n}$ does not exist if $|z|=1$ and $z \neq 1$
- $\lim _{n \rightarrow \infty} z^{n}=\infty$ if $|z|>1$
$\lim _{n \rightarrow \infty} z_{n}=\infty$ means: for every positive M there is a natural number N such that for all $n \geqslant N$ one has $\left|z_{n}\right|>M$.

Oh yes: $\lim _{n \rightarrow \infty} 1^{n}=1$.

Series

Given a sequence $\left\{z_{n}\right\}$ what does (or should)

$$
z_{0}+z_{1}+z_{2}+z_{3}+\cdots
$$

mean?
Make a new sequence $\left\{s_{n}\right\}$ of partial sums:

$$
s_{n}=\sum_{k \leqslant n} z_{k}
$$

Convergence

If $\sigma=\lim _{n} s_{n}$ exists then we say that the series $\sum z_{n}$ converges and we write $\sigma=\sum_{n} z_{n}$.

Thus we give a meaning to $z_{0}+z_{1}+z_{2}+z_{3}+\cdots$:
the limit (if it exists) of the sequence of partial sums.
This definition works for real and complex sequences alike.

Geometric series

Fix z and consider $1+z+z^{2}+z^{3}+\cdots\left(\right.$ so $\left.z_{n}=z^{n}\right)$.
The partial sums can be calculated explicitly:

$$
s_{n}=1+z+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

for $z=1$ we have $s_{n}=n+1$.

Geometric series

The limit of the sequence of partial sums is easily found, in most cases:

- $|z|<1: \sum_{n} z^{n}=\frac{1}{1-z}$
- $|z|>1: \sum_{n} z^{n}=\infty$ also if $z=1$

Geometric series

if $|z|=1$ and $z \neq 1$ then the limit does not exist but we do have

$$
\left|s_{n}\right| \leqslant \frac{2}{|1-z|}
$$

so for each individual z the partial sums are bounded the bound is also valid if $|z|<1$.

Further examples

- $\sum_{n} \frac{1}{n}=\infty\left(\right.$ even though $\left.\lim _{n} \frac{1}{n}=0\right)$
- $\sum_{n} \frac{(-1)^{n+1}}{n}=\ln 2$ (as we shall see later)
- $\sum_{n} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ (Euler)
- $\sum_{n} \frac{1}{n!}=e$
- $\sum_{n} \frac{1}{n^{p}}$ converges iff $p>1$

Absolute convergence

Absolute convergence: $\sum_{n}\left|z_{n}\right|$ converges.
Absolute convergence implies convergence (but not necessarily conversely).
$\sum_{n} \frac{(-1)^{n}}{n}$ converges but $\sum_{n} \frac{1}{n}$ does not
We shall see: $\sum_{n} \frac{z^{n}}{n}$ converges for all z with $|z|=1$ and $z \neq 1$.

Comparison test

```
comparison if \(\left|z_{n}\right| \leqslant a_{n}\) for all \(n\)
and \(\sum_{n} a_{n}\) converges
then \(\sum_{n} z_{n}\) converges absolutely
```


Pointwise convergence

A sequence $\left\{f_{n}\right\}$ of functions converges to a function f (on some domain) if for each individual z in the domain one has

$$
\lim _{n \rightarrow \infty} f_{n}(z)=f(z)
$$

Standard example: $f_{n}(z)=z^{n}$ on $D=\{z:|z|<1\}$. We know $\lim _{n} f_{n}(z)=0$ for all $z \in D$, so $\left\{f_{n}\right\}$ converges to the zero function.

Uniform convergence

$f_{n}(z) \rightarrow f(z)$ uniformly if for every $\epsilon>0$ there is an $N(\epsilon)$ such that for all $n \geqslant N(\epsilon)$ we have

$$
\left|f_{n}(z)-f(z)\right|<\epsilon
$$

for all z in the domain.

Important fact: if $f_{n} \rightarrow f$ uniformly and each f_{n} is continuous then so is f.

Uniform convergence: standard example

We have $z^{n} \rightarrow 0$ on D but not uniformly: let $\epsilon=\frac{1}{2}$, for every n let $z_{n}=\sqrt[n]{\frac{1}{2}}$ then $\left|f_{n}\left(z_{n}\right)-f\left(z_{n}\right)\right|=\frac{1}{2}$.

Let $r<1$ and consider $D_{r}=\{z:|z|<r\}$; then $z^{n} \rightarrow 0$ uniformly on D_{r}.
Given $\epsilon>0$, take N such that $r^{N}<\epsilon$, then for $n \geqslant N$ and all $z \in D_{r}$ we have

$$
\left|z^{n}\right| \leqslant r^{n} \leqslant r^{N}<\epsilon
$$

Uniform convergence: standard example

$\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ for each $z \in D$ but not uniformly:

$$
\sum_{k=0}^{n} z^{k}-\frac{1}{1-z}=\sum_{k=n+1}^{\infty} z^{k}=\frac{z^{n+1}}{1-z}
$$

For each individual n this difference is unbounded.

Uniform convergence: standard example

On a smaller disk D_{r} we have

$$
\left|\sum_{k=0}^{n} z^{k}-\frac{1}{1-z}\right|=\left|\frac{z^{n+1}}{1-z}\right| \leqslant \frac{r^{n+1}}{1-r}
$$

So, on D_{r} the series does converge uniformly.

Uniform convergence: M-test

Very useful test: if there is a convergent series $\sum_{n} M_{n}$ such that

$$
\left|f_{n}(z)\right| \leqslant M_{n}
$$

for all z in the domain, then $\sum_{n} f_{n}$ converges absolutely and uniformly on the domain.

Previous example: $\left|z^{n}\right| \leqslant r^{n}$ for all $z \in D_{r}$.

Power series

Special form: a fixed number z_{0} and a sequence $\left\{a_{n}\right\}$ of numbers are given. Put $f_{n}(z)=a_{n}\left(z-z_{0}\right)^{n}$, we write

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for the resulting series.

Radius of convergence

Important fact:
if $\lim _{n} a_{n}\left(w-z_{0}\right)^{n}=0$ for some w then $\sum_{n} a_{n}\left(z-z_{0}\right)$ converges absolutely whenever $\left|z-z_{0}\right|<\left|w-z_{0}\right|$.

Use comparison test:
first fix N such that $\left|a_{n}\left(w-z_{0}\right)^{n}\right| \leqslant 1$ for $n \geqslant N$.
Then

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\left|a_{n}\left(w-z_{0}\right)^{n}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n}\right| \leqslant\left|\frac{z-z_{0}}{w-z_{0}}\right|^{n}
$$

Geometric series with $r<1$.

Radius of convergence

Even better: if $r<\left|w-z_{0}\right|$ then the power series converges uniformly on the disc

$$
D\left(z_{0}, r\right)=\left\{z:\left|z-z_{0}\right| \leqslant r\right\}
$$

Same proof gives

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right| \leqslant\left(\frac{r}{\left|w-z_{0}\right|}\right)^{n}
$$

for all z in the disc, apply the M-test.

Radius of convergence

Theorem

Given a power series $\sum_{n} a_{n}\left(z-z_{0}\right)^{n}$ there is an R such that

- $\sum_{n} a_{n}\left(z-z_{0}\right)^{n}$ converges if $\left|z-z_{0}\right|<R$
- $\sum_{n} a_{n}\left(z-z_{0}\right)^{n}$ diverges if $\left|z-z_{0}\right|>R$

In addition: if $r<R$ then the series converges uniformly on $\left\{z:\left|z-z_{0}\right| \leqslant r\right\}$.

- On the boundary - $\left|z-z_{0}\right|=R$ - anything can happen.
- $R=0,0<R<\infty$ and $R=\infty$ are all possible.
R is the radius of convergence of the series.

Examples

- $\sum_{n} z^{n}: R=1$
- $\sum_{n} \frac{1}{n} z^{n}: R=1$
- $\sum_{n} n z^{n}: R=1$
- $\sum_{n} \frac{1}{n!} z^{n}: R=\infty$
- $\sum_{n} n^{n} z^{n}: R=0$

In each case consider $\lim _{n} a_{n} z^{n}$ for various z.

On the boundary

The series $\sum_{n} z^{n}$ and $\sum_{n} n z^{n}$ both have radius 1 .
What happens when $|z|=1$?
The series diverges for all such z
as neither $\lim _{n} z^{n}$ nor $\lim _{n} n z^{n}$ is ever zero.

On the boundary

The series $\sum_{n} \frac{1}{n} z^{n}$ has radius 1 .
What happens when $|z|=1$?
That depends on z.
For $z=1$ we have divergence: $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$.
Remember: $\sum_{n=1}^{2^{k}} \frac{1}{n}>1+\frac{1}{2} k$ for all k

On the boundary

The series $\sum_{n} \frac{1}{n} z^{n}$ has radius 1 .
What happens when $|z|=1$ and $z \neq 1$?
The series converges.

This will require some work.

Summation by parts

Remember integration by parts: $\int f g=F g-\int F g^{\prime}$.
The same can be done for sums: let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences. We find a similar formula for $\sum_{n=k}^{l} a_{n} b_{n}$.

The integral is replaced by the sequence of partial sums:
$A_{n}=\sum_{k=0}^{n} a_{k}\left(\right.$ and $\left.A_{-1}=0\right)$.
The derivative is replaced by the sequence of differences:
$\left\{b_{n+1}-b_{n}\right\}$

Summation by parts

The formula becomes

$$
\sum_{n=k}^{l} a_{n} b_{n}=A_{l} b_{l}-A_{k-1} b_{k}-\sum_{n=k}^{l-1} A_{n}\left(b_{n+1}-b_{n}\right)
$$

The proof consists of some straightforward manipulation.
We use this with $a_{n}=z^{n}$ and $b_{n}=\frac{1}{n}$, so $A_{n}=\frac{1-z^{n+1}}{1-z}$

Back to the boundary

Fix some k and let $l>k$ be arbitrary.

$$
\begin{aligned}
\left|\sum_{n=k}^{l} \frac{1}{n} z^{n}\right| & =\left|A_{l} \frac{1}{l}-A_{k-1} \frac{1}{k}-\sum_{n=k}^{l-1} A_{n}\left(\frac{1}{n+1}-\frac{1}{n}\right)\right| \\
& \leqslant \frac{2}{|1-z|}\left(\frac{1}{l}+\frac{1}{k}+\sum_{n=k}^{l-1}\left(\frac{1}{n}-\frac{1}{n+1}\right)\right) \\
& =\frac{2}{|1-z|} \frac{2}{k}
\end{aligned}
$$

This holds for all I, so ...

Back to the boundary

\ldots the partial sums $\sum_{n=1}^{k} \frac{1}{n} z^{n}$ form a Cauchy-sequence.
The completeness of the complex plane ensures that

$$
\sum_{n=1}^{\infty} \frac{1}{n} z^{n}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \frac{1}{n} z^{n}
$$

exists. We denote the sum, for now, by $\sigma(z)$.
The series converges for all z with $|z| \leqslant 1$ and $z \neq 1$.

Uniform convergence

The inequality

$$
\left|\sum_{n=k}^{\prime} \frac{1}{n} z^{n}\right| \leqslant \frac{4}{k|1-z|}
$$

holds for every z with $|z| \leqslant 1$ and $z \neq 1$.
This implies uniform convergence on sets of the form

$$
E_{r}=\{z:|z| \leqslant 1,|1-z| \geqslant r\}
$$

Uniform convergence

For $z \in E_{r}$ we have

$$
\left|\sigma(z)-\sum_{n=1}^{k} \frac{1}{n} z^{n}\right|=\left|\sum_{n=k+1}^{\infty} \frac{1}{n} z^{n}\right| \leqslant \frac{4}{(k+1)|1-z|} \leqslant \frac{4}{(k+1) r}
$$

Now, given $\epsilon>0$ we take n so large that $\frac{4}{(N+1) r}<\epsilon$.
Then $\left|\sigma(z)-\sum_{n=1}^{k} \frac{1}{n} z^{n}\right|<\epsilon$ whenever $k \geqslant N$ and $z \in E_{r}$.

Integrating the geometric series

We know

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}
$$

$$
(|z|<1)
$$

We also know

$$
\frac{1}{1-z}=\sum_{n=0}^{k} z^{n}+\frac{z^{k+1}}{1-z}
$$

Integrate this along the straight line L from 0 to z :

$$
-\log (1-z)=\sum_{n=0}^{k} \frac{1}{n+1} z^{n+1}+\int_{L} \frac{w^{k+1}}{1-w} d w
$$

Integrating the geometric series

We can find an (easy) upper bound for the absolute value of the integral:

$$
\left|\int_{L} \frac{w^{k+1}}{1-w} \mathrm{~d} w\right| \leqslant|z| \times \frac{|z|^{k+1}}{1-|z|}=\frac{|z|^{k+2}}{1-|z|}
$$

Thus

$$
\lim _{k \rightarrow \infty} \int_{L} \frac{w^{k+1}}{1-w} \mathrm{~d} w=0
$$

and so ...

Integrating the geometric series

... we obtain

$$
\sum_{n=1}^{\infty} \frac{1}{n} z^{n}=-\log (1-z)
$$

$$
(|z|<1)
$$

but, by continuity of the sum function $\sigma(z)$ and the Logarithm this formula holds when $|z|=1$ and $z \neq 1$ as well.

Often z is replaced by $-z$ and an extra minus sign is added to give

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{n}=\log (1+z) \quad(|z| \leqslant 1, z \neq-1)
$$

As promised:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-\log 2=-\ln 2
$$

(use $z=-1$) or, with an extra minus sign:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln 2
$$

this is also written

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots=\ln 2
$$

Rest of the boundary

If $z=e^{i \theta}$, with $\theta \neq 2 k \pi$, then

$$
\sum_{n=1}^{\infty} \frac{1}{n} e^{i n \theta}=-\log \left(1-e^{i \theta}\right)=-\ln \left|1-e^{i \theta}\right|-i \operatorname{Arg}\left(1-e^{i \theta}\right)
$$

If we split the series and its sum into their respective real and imaginary parts we get two nice formulas.

Real part

Note

$$
\left|1-e^{i \theta}\right|^{2}=\left(1-e^{i \theta}\right)\left(1-e^{-i \theta}\right)=2-2 \cos \theta=4 \sin ^{2} \frac{1}{2} \theta
$$

So that $-\ln \left|1-e^{i \theta}\right|=-\ln \left(2\left|\sin \frac{1}{2} \theta\right|\right)$ and we get

$$
\sum_{n=1}^{\infty} \frac{\cos n \theta}{n}=-\ln \left(2\left|\sin \frac{1}{2} \theta\right|\right)
$$

Imaginary part

To see what $\varphi=-\operatorname{Arg}\left(1-e^{i \theta}\right)$ is draw a picture

Imaginary part

We have $1-e^{i \theta}=(1-\cos \theta)-i \sin \theta$, so that if $0<\theta<\pi$ we get

$$
\tan \varphi=\frac{\sin \theta}{1-\cos \theta}=\frac{2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin ^{2} \frac{1}{2} \theta}=\frac{\cos \frac{1}{2} \theta}{\sin \frac{1}{2} \theta}=\tan \left(\frac{1}{2} \pi-\frac{1}{2} \theta\right)
$$

If $0<\theta<\pi$ then φ and $\frac{1}{2} \pi-\frac{1}{2} \theta$ lie between 0 and $\frac{1}{2} \pi$ so that

$$
\varphi=\frac{1}{2} \pi-\frac{1}{2} \theta
$$

Imaginary part

We find

$$
\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}=\frac{1}{2} \pi-\frac{1}{2} \theta
$$

$$
(0<\theta<\pi)
$$

The sum must be an odd function so

$$
\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}=-\frac{1}{2} \pi-\frac{1}{2} \theta \quad(-\pi<\theta<0)
$$

