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Abstract. In this article we construct a holomorphic functional calculus for

operators of half-plane type and show how key facts of semigroup theory (Hille-

Yosida and Gomilko-Shi-Feng generation theorems, Trotter-Kato approxima-
tion theorem, Euler approximation formula, Gearhart-Prüss theorem) can be

elegantly obtained in this framework. Then we discuss the notions of bounded

H∞-calculus and m-bounded calculus on half-planes and their relation to weak
bounded variation conditions over vertical lines for powers of the resolvent.

Finally we discuss the Hilbert space case, where semigroup generation is char-
acterised by the operator having a strong m-bounded calculus on a half-plane.

1. Introduction

The theory of strongly continuous semigroups is more than 60 years old, with the
fundamental result of Hille and Yosida dating back to 1948. Several monographs
and textbooks cover material which is now canonical, each of them having its own
particular point of view. One may focus entirely on the semigroup, and consider
the generator as a derived concept (as in [11]) or one may start with the generator
and view the semigroup as the inverse Laplace transform of the resolvent (as in [2]).

Right from the beginning, functional calculus methods played an important role
in semigroup theory. Namely, given a C0-semigroup T = (T (t))t≥0 which is uni-
formly bounded, say, one can form the averages

Tµ :=

∫ ∞
0

T (s)µ(ds) (strong integral)

for µ ∈ M(R+) a complex Radon measure on R+ = [0,∞). If −A denotes the
generator of the semigroup, then one wants to interpret T (t) = e−tA, and hence it
is reasonable to define

f(A) := Tµ, where f(z) = Lµ(z) =

∫ ∞
0

e−sz µ(ds) (Re z > 0)

is the Laplace transform of µ. This functional calculus is called the Hille–Phillips
calculus, and it is essentially based on methods from real analysis.

On the other hand, during the last two decades the theory of holomorphic func-
tional calculus has proved to be an indispensable tool to deal with abstract evolution
equations, above all in the discussion of maximal regularity [1, 23, 19]. Despite their
success, these methods have been mainly restricted to sectorial operators and hence
to holomorphic semigroups. DeLaubenfels [8, 9] devised a fairly general approach,
however without large influence at the time. The holomorphic functional calculus
for strip-type operators was developed in [14, 15], basically to treat C0-groups that
arise as imaginary powers of a sectorial operator.

In contrast to this progress, a treatment of general C0-semigroups by means of
a holomorphic functional calculus approach is missing, and the aim of this paper
is to close this gap. (Some parts of the presented material are contained in an
unpublished note [17] by the second author, but appear here in published form for
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the first time. The mere construction of the calculus can be found already in the
papers of deLaubenfels mentioned above.)

The fundamental difference between the Hille–Phillips calculus and the holomor-
phic functional calculi is that the former starts with the semigroup, whereas the
latter depart purely from resolvents. As such, holomorphic functional calculus can
be used to establish generation theorems and we shall incorporate the two most im-
portant ones (the Hille–Yosida and the Gomilko–Shi–Feng theorems). In functional
calculus terms, the generator property is (more or less) equivalent to (e−tz)(A) be-
ing a bounded operator for each t > 0 (see Proposition 2.5 for a precise statement).
In our holomorphic set-up, the operator (e−tz)(A) is essentially given as the inverse
Laplace transform of the resolvent, so the present paper can be seen as a systema-
tisation of this approach to generation theorems that has often been used in an ad
hoc way in the past.

The notion of bounded H∞-calculus on sectors (or strips) has been extensively
studied and it is known to have many applications to evolution equations [19]. It can
be characterised by weak quadratic, or weak bounded variation, estimates [7, 23, 3],
or by quadratic, or square function, estimates which are particularly simple in the
case of Hilbert spaces. There is a corresponding definition of bounded H∞-calculus
on half-planes, but similar characterisations are not valid (see Section 7). Instead we
show in Theorem 6.4 that a stronger form of weak bounded variation is equivalent
to a weaker form of holomorphic functional calculus on half-planes. The stronger
form of weak bounded variation is the condition shown by Gomilko [12] and Shi and
Feng [26] to be sufficient for generation of a C0-semigroup. For the weaker form of
functional calculus, observe that if f(z) is bounded and holomorphic on the right
half-plane Ra := {z ∈ C | Re z > a}, then ‖f ′(z)‖ ≤ (b− a)−1‖f‖H∞(Ra) whenever
Re z > b > a. Thus if A is an operator with bounded H∞-calculus on Rb, it satisfies
the following property which we call 1-bounded calculus:

‖f ′(A)‖ ≤ C

b− a
‖f‖H∞(Ra)

whenever a < b and f ∈ H∞(Ra), where C is independent of a. In contrast to
strips, this type of functional calculus is not equivalent to bounded H∞-calculus on
half-planes, but it is equivalent to the condition of the Gomilko–Shi–Feng theorem.

1.1. Some Notations and Definitions. For a closed linear operator A on a
complex Banach space X we denote by dom(A), ran(A), ker(A), σ(A) and %(A)
the domain, the range, the kernel, the spectrum and the resolvent set of A, re-
spectively. The norm-closure of the range is written as ran(A). The space of
bounded linear operators on X is denoted by L(X). For two possibly unbounded
linear operators A,B on X their product AB is defined on its natural domain
dom(AB) := {x ∈ dom(B) | Bx ∈ dom(A)}. An inclusion A ⊆ B denotes in-
clusion of graphs, i.e., it means that B extends A. A possibly unbounded operator
A on X commutes with a bounded operator T ∈ L(X) if graph(A) is T×T -invariant,
or equivalently if TA ⊆ AT .

We let R+ := [0,∞) and write C+ := {z ∈ C | Re z > 0} for the open, and
C+ := {z ∈ C | Re z ≥ 0} for the closed, right half-planes. More generally, for
ω ∈ [−∞,∞] we denote by

Lω := {z ∈ C | Re z < ω}, Rω := {z ∈ C | Re z > ω},
the open left and right half-planes defined by the abscissa Re z = ω, where in the
extremal cases one half-plane is understood to be empty, and the other is the whole
complex plane. For a domain Ω, let O(Ω) be the space of all holomorphic functions
f : Ω→ C, and H∞(Ω) be the subspace of all bounded holomorphic functions. We
denote the supremum norm on H∞(Ω) by ‖ ·‖H∞(Ω) or ‖·‖H∞ , or simply ‖·‖∞ if the
context excludes ambiguities.
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In the present paper we shall use standard results about vector-valued holomor-
phic functions as collected in [2, Appendix A].

2. Holomorphic Functional Calculus on a Half-Plane

It is a standard fact from semigroup theory that if −A generates a strongly
continuous semigroup, then the spectrum σ(A) of A is located in a right half-
plane of C, and the resolvent R(λ,A) = (λ − A)−1 is uniformly bounded in the
complementary left half-plane. We shall take this “spectral picture” as a starting
point.

Definition 2.1. An operator A on a Banach space X is said to be of half-plane
type ω ∈ (−∞,∞] (in short: A ∈ HP(ω)) if σ(A) ⊆ Rω and

Mα := Mα(A) := sup{‖R(z,A)‖ | Re z ≤ α} < ∞ for every α < ω.

An operator A is of strong half-plane type ω (in short: A ∈ SHP(ω)) if

M ′α := M ′α(A) := sup{|α− Re z| ‖R(z,A)‖ | Re z ≤ α} < ∞

for every α < ω.
An operator A is said to be of (strong) half-plane type if it is of (strong) half-

plane type ω for some ω ∈ (−∞,∞]. One writes A ∈ HP(X) or A ∈ SHP(X),
respectively.

Note that SHP(ω) ⊆ HP(ω). If A is of half-plane type, then it is of half-plane
type s0(A), where

s0(A) := max{ω | A ∈ HP(ω)} = sup
{
α | sup

Re z≤α
‖R(z,A)‖ <∞

}
is the abscissa of uniform boundedness of the operator A.

For ω ∈ R we define

E(Rω) :=
{
f ∈ O(Rω) | f(z) = O

(
|z|−(1+s)

)
as |z| → ∞, for some s > 0

}
.

Then E(Rω) contains the functions (λ − z)−1(µ − z)−1 whenever Reλ,Reµ < ω.
For f ∈ E(Rω) we have the following version of Cauchy’s integral theorem.

Lemma 2.2. Let f ∈ E(Rω) and let ω < δ. Then

f(a) =
1

2πi

∫
Re z=δ

f(z)

z − a
dz (δ < Re a)

and

0 =
1

2πi

∫
Re z=δ

f(z) dz.

The direction of integration is top down, i.e., from δ + i∞ to δ − i∞.

Proof. Fix Re a > δ. To establish the formula we employ the usual Cauchy theorem
with the contour being the boundary of the rectangle Im z ∈ [−R,R],Re z ∈ [δ, δ′],
for δ′ > Re a, and R > 0 large. If we let R→∞ we see that

f(a) =
1

2πi

∫
Re z=δ

f(z)

z − a
dz − 1

2πi

∫
Re z=δ′

f(z)

z − a
dz.

(The decay of f(z) as |Im z| → ∞ causes the integrals to converge; and the inte-
grals over the upper and lower rectangle sides vanish as R becomes large.) As a
consequence of this representation we see that the value of the second integral does
not depend on δ′. So we may let δ′ → +∞ without changing its value. But then
this value has to be zero, because of the decay of f . The arguments in the second
case are similar. �
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Now, let A be an operator of half-plane type, and let ω < δ < s0(A). Since the
resolvent R(·, A) is bounded on the vertical line {Re z = δ}, the integral

Φ(f) := f(A) :=
1

2πi

∫
Re z=δ

f(z)R(z,A) dz

converges absolutely. By virtue of Cauchy’s theorem (for vector-valued functions)
and arguments similar to the proof of Lemma 2.2, the definition of f(A) is inde-
pendent of δ ∈ (ω, s0(A)).

Proposition 2.3. The so-defined mapping Φ : E(Rω)→ L(X) satisfies the follow-
ing properties:

a) Φ is a homomorphism of algebras.
b) If T ∈ L(X) commutes with A, i.e., TA ⊆ AT , it commutes with every Φ(f),

f ∈ E.
c) Φ(f(z)(λ− z)−1) = Φ(f)R(λ,A) whenever Reλ < ω.
d) Φ((λ− z)−1(µ− z)−1) = R(λ,A)R(µ,A) whenever Reλ,Reµ < ω.

Proof. a) Additivity is clear. Multiplicativity follows from a combination of Fubini’s
theorem, the resolvent identity and Lemma 2.2. The computation is the same as in
the classical Dunford–Riesz setting, see [6, VII.4.7].
b) is obvious.
c) By the resolvent identity and Lemma 2.2

Φ(f)R(λ,A) =
1

2πi

∫
Re z=δ

f(z)R(z,A)R(λ,A) dz

=
1

2πi

∫
Re z=δ

f(z)

λ− z
[R(z,A)−R(λ,A)] dz

=
1

2πi

∫
Re z=δ

f(z)

λ− z
R(z,A) dz = Φ

(
f(z)

λ− z

)
.

d) We only give an informal argument and leave the details to the reader. In the
integral

1

2πi

∫
Re z=δ

1

(λ− z)(µ− z)
R(z,A) dz

we shift the path to the left, i.e., let δ → −∞. When one passes the abscissas
δ = Reλ and δ = Reµ, the residue theorem yields some additive contributions
which sum up to R(λ,A)R(µ,A) by the resolvent identity; if δ < Reλ,Reµ, the
integral does not change any more as δ → −∞ and hence it is equal to zero. �

Denote by M(Rω) the field of meromorphic functions on the right half-plane
Rω. Then the triple (E(Rω),M(Rω),Φ) is a meromorphic functional calculus in the
sense of [19, Section 1.3]. A meromorphic function f is called regularisable if there
is a function e ∈ E such that ef ∈ E and e(A) is injective. In this case one defines

f(A) := e(A)−1(ef)(A),

which is a closed operator. This definition does not depend on the chosen regulariser
e ∈ E (cf. [19, Section 1.2.1] or [18]).

The basic rules governing this functional calculus are the same as for any mero-
morphic functional calculus, see [19, Theorem 1.3.2]. The two most important of
these are the laws for sums:

f(A) + g(A) ⊆ (f + g)(A)

and products

f(A)g(A) ⊆ (fg)(A), dom((fg)(A)) ∩ dom(g(A)) = dom(f(A)g(A)).

In particular, one has f(A) + g(A) = (f + g)(A) and f(A)g(A) = (fg)(A) whenever
g(A) ∈ L(X).
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Note that every bounded holomorphic function f ∈ H∞(Rω) is regularisable,
namely by the function e(z) := (µ−z)−2, where Reµ < ω. This is because f(z)(µ−
z)−2 decreases quadratically as |z| → ∞ and e(A) = R(µ,A)2 is clearly injective.
In particular, for each t ≥ 0 the operator

e−tA := (e−tz)(A)

is defined as a closed operator and dom(A2) ⊆ dom(e−tA), t ≥ 0.

Lemma 2.4. (Complex inversion formula)
Let A be an operator of half-plane type, and let ω < s0(A). Then for each x ∈
dom(A2) the function

(t 7−→ e−tAx) : [0,∞) −→ X

is continuous and satisfies supt>0

∥∥eωte−tAx∥∥ <∞. Its Laplace transform is∫ ∞
0

e−λte−tAxdt = R(λ,−A)x = (λ+A)−1x (Reλ > −ω).

Moreover, e−tAx is also given by the improper integral

(2.1) e−tAx =
−1

2π

∫ ∞
−∞

e−(ω+is)tR(ω + is, A)xds (t > 0).

Proof. Fix µ < ω and write e−tAx = (e−tz/(µ−z)2)(A)[(µ−A)2x]. Then the conti-
nuity in t is clear from Lebesgue’s theorem, and the bound is a simple estimate. An
application of Fubini’s theorem establishes the claim about the Laplace transform.
To establish (2.1) we fix t > 0 and µ < ω and note that∫

Re z=ω

e−zt

µ− z
dz = 0

in the improper sense. Indeed,

e−zt

µ− z
=

e−zt

t(µ− z)2
−
(

e−zt

t(µ− z)

)′
,

the (improper) integral over the right-hand side being zero by Lemma 2.2. With
this information at hand, we use the formula (µ− A)R(z,A) = (µ− z)R(z,A) + I
twice and compute

e−tAx =

(
e−tz

(µ− z)2

)
(A)(µ−A)2x =

1

2πi

∫
Re z=ω

e−tz

(µ− z)2
R(z,A)(µ−A)2x dz

=
1

2πi

∫
Re z=ω

e−tz

µ− z
R(z,A)(µ−A)xdz =

1

2πi

∫
Re z=ω

e−tzR(z,A)xdz.

This concludes the proof. �

Note that if A is a densely defined operator with non-empty resolvent set, then
dom(An) is dense in X for each n ≥ 2. Indeed, dom(An) = ranTn for T := R(µ,A)
and any µ ∈ %(A); then inductively one obtains

ranT = T (ranTn) ⊆ T (ranTn) = ranTn+1

by the continuity of T , hence X = ranT = ranTn+1.

Proposition 2.5. Let A be an operator of half-plane type. Then −A is the gener-
ator of a C0-semigroup T if and only if A is densely defined and e−tA is a bounded
operator for all t ∈ [0, 1] satisfying supt∈[0,1]

∥∥e−tA∥∥ <∞. In this case, T (t) = e−tA

for all t ≥ 0.
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Proof. Let −A generate a C0-semigroup (T (t))t≥0. Then A is densely defined, so
dom(A2) is dense. Lemma 2.4 yields that R(·,−A)x is the Laplace transform of
(t 7→ e−tAx) for x ∈ dom(A2). By the uniqueness of Laplace transforms, T (t)x =
e−tAx, t ≥ 0. Since dom(A2) is dense and e−tA is a closed operator, e−tA = T (t) is
a bounded operator. The uniform boundedness for t ∈ [0, 1] is a standard property
of C0-semigroups.

Conversely, suppose that A is densely defined and T (t) := e−tA is a bounded
operator for all t ≥ 0. Then T is a semigroup (by general functional calculus) and
dom(A2) is dense. From the uniform boundedness supt∈[0,1] ‖T (t)‖ < ∞ and the

semigroup property, one concludes easily that (T (t))t≥0 is uniformly bounded on
compact intervals. Lemma 2.4 and the density of dom(A2) imply that (T (t))t≥0

is strongly continuous. Its Laplace transform coincides with the resolvent of −A
on dom(A2) (Lemma 2.4), and hence on X by density. So −A is the generator of
T . �

Remarks 2.6. a) We do not know if one can omit the boundedness assumption
from Proposition 2.5.

b) The complex inversion formula (2.1) is well known when (e−tA)t≥0 is a C0-
semigroup (see [21, Theorem 11.6.1], for example). In the opposite direction,
many instances in the literature (for example, [21, Theorem 12.6.1]) use it as
a starting point for generation theorems. Lemma 2.4 shows that our approach
works in the latter direction. Moreover, it has the advantage of replacing te-
dious arguments involving closures and improper integrals by a clean algebraic
extension procedure applied to the convenient functional calculus for elemen-
tary functions.

2.1. Compatibility with the Sectorial Calculus. For 0 < ω ≤ π denote by

Sω := {z ∈ C | 0 6= z, |arg z| < ω}

the open sector symmetric about the positive real axis with vertex 0 and angle 2ω.
The degenerate case is S0 := (0,∞).

An operator A on a Banach space X is called sectorial of angle ϕ ∈ [0, π) if
σ(A) ⊆ Sϕ and for each ω ∈ (ϕ, π) one has

M(ω,A) := sup{‖zR(z,A)‖ | z ∈ C \ Sω} <∞.

The minimal ϕ such that A is sectorial of angle ϕ is called the angle of sectoriality.
There is a natural holomorphic functional calculus for sectorial operators, discussed
at length in [19].

Examples 2.7. 1) If A satisfies an estimate ‖R(z,A)‖ ≤ M |Re z|−1
for Re z <

0, then A is sectorial of angle π/2. In particular, if −A generates a bounded
semigroup or if A is an operator of strong half-plane type ω > 0, then A is
sectorial of angle π/2.

2) On the other hand, if A is invertible and sectorial of angle ϕ < π/2, then A is
of half-plane type ω for some ω > 0.

We note the following result about compatibility of functional calculi.

Proposition 2.8. Suppose that A is of half-plane type ω > 0 and that f is a
holomorphic function on R0 = Sπ/2. If A is also sectorial and f(A) is defined in
either calculus, then both definitions lead to the same operator.

Proof. We only sketch the basic ingredients of the proof and leave the details to the
reader. Let ωs(A) be the sectoriality angle of A. Suppose first that ωs(A) ≥ π/2.
Let ωs(A) < ϕ < π and take f in the class H∞0 (Sϕ) of holomorphic functions on Sϕ
defined in [19, p.28]. Then g(z) := f(z)(1 + z)−1 ∈ E(R0). But g(A) is the same in
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either calculus by contour deformation. Hence f(A) is the same in either calculus.
This establishes a morphism of the calculus on the sector Sϕ to the calculus on the
half-plane R0, and the compatibility for other functions follows from [19, Prop.1.2.7].

In the case that ωs(A) < π/2 take f ∈ E(R0). Then f is in the elementary
calculus for invertible sectorial operators, see [19, Sec.2.5.1] and f(A) is the same
in either calculus by contour deformation. Again we have a morphism and that
establishes the claim. �

3. The Hille–Yosida Theorem

The Hille–Yosida theorem is one of the most fundamental results in the “elemen-
tary” theory of C0-semigroups. We show that it is a straightforward consequence
of the following general fact of functional calculus theory.

Theorem 3.1. (Convergence Lemma)
Let A be a densely defined operator of half-plane type on a Banach space X, and
let ω < s0(A). Let I be a directed set, and let K be any index set. Suppose that
(fι,κ)(ι,κ)∈I×K ⊆ H∞(Rω) has the following properties:

1) supι,κ ‖fι,κ‖H∞(Rω) <∞;

2) fι,κ(A) ∈ L(X) for all ι, κ, and supι,κ ‖fι,κ(A)‖ <∞;

3) fκ(z) := limι fι,κ(z) exists for every z ∈ Rω uniformly in κ ∈ K.

Then fκ ∈ H∞(Rω), fκ(A) ∈ L(X), fι,κ(A)x → f(A)x for each x ∈ X uniformly
in κ ∈ K, and ‖fκ(A)‖ ≤ lim supι ‖fι,κ(A)‖.

Proof. The proof is analogous to the proof of [19, Proposition 5.1.4]. By [2, Propo-
sition A.3], the function Fι := (fι,κ)κ : Rω → `∞(K) is bounded and holomorphic.
Vitali’s theorem [2, Theorem A.5] for nets implies that F := (fκ)κ is holomorphic
and that the convergence Fι → F is uniform on compact subsets of Rω. Moreover,
condition 1) clearly implies that F is bounded.

Let µ < ω < δ < s0(A). Then(
fι,κ(z)(µ− z)−2

)
(A) = lim

n→∞

−1

2π

∫ n

−n

fι,κ(δ + is)

(µ− δ − is)2
R(δ + is, A) ds,

where the limit is uniform in ι and κ. Together with the uniform convergence of the
integrand on [−n, n], it follows that (fι,κ(z)(µ − z)−2)(A) → (fκ(z)(µ − z)−2)(A)
in norm, uniformly in κ ∈ K. Hence for x ∈ dom(A2),

fι,κ(A)x =
( fι,κ(z)

(µ− z)2

)
(A)(µ−A)2x→

( fκ(z)

(µ− z)2

)
(A)(µ−A)2x = fκ(A)x

uniformly in κ ∈ K. Clearly ‖fκ(A)x‖ ≤ lim supι ‖fι,κ(A)‖ ‖x‖. Since f(A) is a
closed operator with dom(f(A)) ⊇ dom(A2), which is dense, fκ(A) is bounded and
‖fκ(A)‖ ≤ lim supι ‖fι,κ(A)‖. Again by the density of dom(A2), fι,κ(A) → fκ(A)
strongly, uniformly in κ ∈ K. �

Remark 3.2. In a similar way one can extend the classical instances of convergence
lemmas for sectorial and strip-type operators [19, Prop. 5.1.4, 5.1.7] to parametrized
families of functions.

Theorem 3.3. (Hille–Yosida)
Let A be a densely defined operator on the Banach space X such that (−∞, 0) ⊆ %(A)
and M := supn∈N,λ>0 ‖λn(λ+A)−n‖ < ∞. Then A is of strong half-plane type 0

and
∥∥e−tA∥∥ ≤M for all t ≥ 0.
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Proof. First we show that A is of half-plane type. Fix µ such that Reµ > 0. For
large λ > 0, more precisely for λ > |µ|2 /(2 Reµ), one has |λ− µ| < λ. By the
Taylor series expansion of the resolvent it follows that −µ ∈ %(A) and

(µ+A)−1 =

∞∑
n=0

(λ− µ)n(λ+A)−(n+1).

Estimating norms we obtain∥∥(µ+A)−1
∥∥ ≤M ∞∑

n=0

|λ− µ|n

λn+1
=

M

λ− |λ− µ|
.

and with λ→∞ we conclude that
∥∥(µ+A)−1

∥∥ ≤M/Reµ. It follows that A is of
strong half-plane type 0.

Define rn,t(z) := (1 + (tz)/n)−n. For fixed ω < 0 and large n ∈ N we have

sup
Re z≥ω

|rn,t(z)| =
(

inf
Re z≥ω

∣∣∣∣1 +
tz

n

∣∣∣∣)−n =

(
1 +

tω

n

)−n
.

Since (1 + tω/n)−n → e−tω as n → ∞, we have supn ‖rn,t‖H∞(Rω) < ∞. Also, by

hypothesis,

‖rn,t(A)‖ =
∥∥(1 + t/nA)−n

∥∥ =
∥∥(n/t)

n(n/t+A)−n
∥∥ ≤M for all n ∈ N.

Applying the Convergence Lemma yields
∥∥e−tA∥∥ ≤M , as desired. �

If we re-examine the proof in view of the dependence on t ≥ 0, we obtain the
following.

Corollary 3.4. (Euler approximation)
Let −A be the generator of a uniformly bounded C0-semigroup (T (t))t≥0 on a Ba-
nach space X. Then for each x ∈ X[(

1 + t/nA
)−1]n

x→ T (t)x as n→∞

uniformly in t from compact subintervals of [0,∞).

Proof. Standard semigroup theory yields thatA satisfies the hypotheses of the Hille–
Yosida Theorem 3.3. The proof of that theorem shows that rn,t(A)x → e−tAx =
T (t)x for each x ∈ X and for each t ≥ 0. However, by employing the full force of the
Convergence Lemma 3.1, one can adapt the proof in order to show that rn,t(A)x→
T (t)x uniformly in t from compact subintervals of R+, for each x ∈ X. �

Of course, one can use the Convergence Lemma to establish the Euler approxi-
mation for any (not necessarily bounded) C0-semigroup on a Banach space.

Remark 3.5. Note that it follows from Proposition A.7 that “higher-order” Hille–
Yosida estimates imply the lower-order ones, i.e.,

sup
n∈N,λ>0

∥∥λn(λ+A)−n
∥∥ = sup

n≥N,λ>0

∥∥λn(λ+A)−n
∥∥

for each N ≥ 1.

4. The Trotter–Kato Theorem

While in the Convergence Lemma the function is approximated and the operator
is fixed, in the following we fix the function and approximate the operator. The
correct set-up requires that the approximants An are “of the same type” as the
operator, with the relevant constants being uniformly bounded.

More precisely, a family of operators (Aι)ι is called uniformly of half-plane type
ω ∈ R ∪ {−∞} if each Aι is of half-plane type ω and supιMα(Aι) < ∞ for each
α < ω.
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Example 4.1. Let A be of half-plane type 0, and let Aλ := λA(λ+A)−1 for λ ≥ 1
be the Yosida approximants. Then the family (Aλ)λ≥1 is uniformly of half-plane
type 0. Indeed, for Reµ < 0 a little computation shows that µ ∈ %(Aλ) with

(4.1) R(µ,Aλ) =
λ2

(λ− µ)2
R
( λµ

λ− µ
,A
)
− 1

λ− µ
.

Note that

Re

(
λµ

λ− µ

)
= λ2 Re

1

λ− µ
− λ =

λ2 Reµ− λ |µ|2

|λ− µ|2
< 0.

The second term in (4.1) can be estimated by

1

|λ− µ|
≤ min

( 1

λ
,

1

|Reµ|

)
.

If A satisfies an estimate ‖R(z,A)‖ ≤M/ |Re z| for Re z < 0 (e.g., in the case that
−A generates a bounded C0-semigroup) then

‖R(µ,Aλ)‖ ≤ λ2

|λ− µ|2
M |λ− µ|2

λ2|Reµ|+ λ |µ|2
+

1

|λ− µ|
≤ M + 1

|Reµ|
,

independently of λ > 0. In the general case, fix α > 0 and define ε := α/(α + 1).
Then εα = α− ε ≤ λ(α− ε) since ε < α and λ ≥ 1. Hence, if Reµ ≤ −α,

Re

(
λµ

λ− µ

)
= Re

λ2

λ− µ
− λ ≤ λ2

|λ− µ|
− λ ≤ λ2

λ+ α
− λ ≤ −ε.

It follows that

‖R(µ,Aλ)‖ ≤ λ2

(λ− Reµ)2
M−ε(A) +

1

λ− Reµ
≤M−ε(A) + 1

whenever λ ≥ 1 and Reµ ≤ −α.

In the previous example we clearly have limλ→∞R(µ,Aλ) = R(µ,A) in norm
uniformly in µ from compact subsets of the open half-plane {Re z < 0}.

Proposition 4.2. Let (Aι)ι∈I be a net of operators, uniformly of half-plane type τ ,
and let A be an operator such that R(µ,Aι)→ R(µ,A) in norm/strongly whenever
Reµ < τ . Then A is also of half-plane type τ . Moreover, for ω < τ and f ∈ E(Rω)
one has f(Aι)→ f(A) in norm/strongly.

Suppose furthermore that A is densely defined. If f ∈ H∞(Rω) and f(Aι) ∈
L(X) for all ι ∈ I with C := supι ‖f(Aι)‖ < ∞, then also f(A) ∈ L(X), and
f(Aι)→ f(A) strongly.

Proof. The first assertion is straightforward. For the second we employ once again
Vitali’s theorem [2, Theorem A.5] for nets to conclude that the convergence of the
resolvents is uniform in µ from compact subsets of {Re z < τ}. Then a standard
argument similar to part of the proof of Theorem 3.1 shows that f(Aι)→ f(A) in
norm/strongly.

Now suppose that A is densely defined, so dom(A2) is dense in X. Take x ∈
dom(A2), f ∈ H∞(Lω) and e(z) := f(z)(µ − z)−2 ∈ E(Rω), where µ < ω is fixed.
Then∥∥e(Aι)(µ−A)2x

∥∥ =
∥∥f(Aι)R(µ,Aι)

2(µ−A)2x
∥∥ ≤ C ∥∥R(µ,Aι)

2(µ−A)2x
∥∥ .

Since we know already that e(Aι) → e(A) and R(µ,Aι) → R(µ,A), we conclude
that

‖f(A)x‖ =
∥∥e(A)(µ−A)2x

∥∥ ≤ C ∥∥R(µ,A)2(µ−A)2x
∥∥ = C ‖x‖ .

Since dom(A2) is dense, it follows that f(A) ∈ L(X) with ‖f(A)‖ ≤ C. To prove
that f(Aι) → f(A) (strongly), we need only to show f(Aι)x → f(A)x for all
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x ∈ dom(A2). So take x ∈ dom(A2) and let y := (µ − A)2x. We have seen above
that f(Aι)R(µ,Aι)

2y → f(A)x, so we estimate the difference∥∥f(Aι)x− f(Aι)R(µ,Aι)
2y
∥∥ =

∥∥f(Aι)R(µ,A)2y − f(Aι)R(µ,Aι)
2y
∥∥

≤ C
∥∥R(µ,A)2y −R(µ,Aι)

2y
∥∥→ 0

by hypothesis. �

Remark 4.3. As in the Convergence Lemma, there is a version of Proposition 4.2
that yields some uniformity: suppose that (fκ)κ∈K ⊆ H∞(Rω) is uniformly bounded
and supι,κ ‖fκ(Aι)‖ < ∞. Then the convergence fκ(Aι)x → fκ(A)x is uniform in
κ, for every x ∈ X.

Another variant of Proposition 4.2 considers parametrized nets (Aι,κ)ι,κ. We
leave the details to the reader.

Theorem 4.4. (Trotter–Kato)
Suppose that, for each n ∈ N, An is the generator of a C0-semigroup, and that∥∥e−tAn∥∥ ≤ M for all t ≥ 0, n ∈ N. Suppose further that A is a densely defined
operator and for some λ0 < 0 one has λ0 ∈ %(A) and R(λ0, An) → R(λ0, A)
strongly. Then A generates a C0-semigroup and one has e−tAnx→ e−tAx uniformly
in t ∈ [0, τ ], for each x ∈ X, τ > 0.

Proof. The theorem is a consequence of Proposition 4.2 and Remark 4.3, as soon
as we show that actually {Re z < 0} ⊆ %(A) and R(µ,An) → R(µ,A) strongly
whenever Reµ < 0. This is done as in [11, Proposition III.4.4]. �

Remark 4.5. A common assumption on An and A implying that R(λ0, An) →
R(λ0, A) strongly is the following: the operator A is densely defined, λ0 − A has
dense range, and there exists a core D of A such that Anx→ Ax for all x ∈ D. See
[11, Theorem III.4.9].

However, one might not always be given the operator A. Instead one may know
that R(λ0, An)→ Q ∈ L(X) strongly, andQ has dense range. By general arguments
as in [19, Appendix A.5] one has Q = R(λ0, A) for some possibly multi-valued
operator A, which is densely defined by the range assumption on Q. It then remains
to show that A is in fact single-valued, i.e., Q is injective.

5. Weak Bounded Variation Conditions and m-Bounded Calculus

Let A be of half-plane type ω and α < ω. Then A is said to have bounded
H∞-calculus on Rα if there is M ≥ 0 such that

(5.1) ‖f(A)‖ ≤M ‖f‖∞,Rα
for all f ∈ H∞(Rα). If A is densely defined, it suffices to have (5.1) for all f ∈ E(Rα).
Indeed, one can apply the convergence lemma to the functions

fn(z) := f(z)

(
n

n− α+ z

)2

(Re z ≥ α, n ∈ N).

(Note that |fn| ≤ |f | for all n ∈ N.)

Remark 5.1. This notion of bounded H∞-calculus for operators of half-plane type is
completely analogous to the notion of boundedH∞-calculus on sectors and strips for
sectorial and strip-type operators, respectively [19, Chapter 5]. For sectorial opera-
tors this notion plays an essential role in applications to evolution equations, in par-
ticular to the problem of maximal regularity [23]. Via the log / exp-correspondence,
bounded H∞-calculus on strips and sectors can be reduced to one another, see [19,
Prop.5.3.3] or [15].
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The theory of bounded H∞-calculus on half-planes has been unexplored up to
now. In fact, there have been only two classes of examples: operators similar to
generators of (quasi-)contraction semigroups on Hilbert spaces, and the sectorial
operators with a bounded sectorial calculus of angle < π/2. A genuine class of op-
erators of half-plane type (generators of non-holomorphic bounded semigroups, say)
with a bounded H∞-calculus on a half-plane is missing, let alone a characterization
of that notion.

Now, for a sectorial operator A of angle ω0, the boundedness of the H∞-calculus
on a sector Sω can — under certain additional conditions on the Banach space
and the resolvent — be characterized by so-called “square function” or “quadratic”
estimates on A and A∗. In the simplest case and if X = H is a Hilbert space, these
are of the form ∫ ∞

0

‖ϕ(tA)x‖2 dt

t
≤M ‖x‖2 (x ∈ X),

where ϕ is a non-zero holomorphic function on the sector Sω satisfying |ϕ(z)| ≤
min(|z|s , |z|−s) for some s > 0. In the non-Hilbertian case, the form of the quadratic
estimates is different, and it leads to the so-called γ-spaces [22, 13]. Alternatively,
building on [4] Cowling et al. in [7] introduced weak quadratic estimates of the form

(5.2)

∫ ∞
0

|〈ϕ(tA)x, x′〉| ≤M ‖x‖ ‖x′‖ (x ∈ X, y ∈ X ′)

and showed that under certain conditions on the function ϕ these indeed characterize
the boundedness of a H∞-calculus on a sector. (We are oversimplifying here, please
consult [7] for the precise statements.) If one uses the function ϕ(z) = z

(e±iθ−z)2 for

π > θ > ω0, then (5.2) takes the form∫
∂Sθ

∣∣〈AR(λ,A)2x, x′
〉∣∣ |dλ| ≤M ‖x‖ ‖x′‖ (x ∈ X,x′ ∈ X ′),

a condition put forward by Kunstmann and Weis in [23]. It was shown in [3] that
for strip-type operators A one has an analogous condition, namely

(5.3)

∫
∂Stθ

∣∣〈R(λ,A)2x, x′
〉∣∣ |dλ| ≤M ‖x‖ ‖x′‖ (x ∈ X,x′ ∈ X ′).

Here Stθ is the vertical strip {z ∈ C | − θ < Re z < θ}, so the integral is over two
vertical lines. These conditions represent weak bounded variation of the functions
AR(λ,A) and R(λ,A) respectively. Our aim in the present section is to explore
the condition (5.3) when we replace the strip by a half-plane. Let us begin with an
auxiliary result.

Lemma 5.2. Let α ∈ R and let A be an operator such that the vertical line α+ iR
is contained in %(A). Suppose further that for some n ≥ 1 and C ≥ 0 one has

(5.4)

∫
R

∣∣〈R(α+ it, A)n+1x, x′〉
∣∣ dt ≤ C ‖x‖ ‖x′‖ (x ∈ X,x′ ∈ X ′).

Then supt∈R ‖R(α+ it, A)n‖ <∞. If A is densely defined or X is reflexive then

〈R(α+it, A)nx, x′〉 = −
∫ t

−∞
in
〈
R(α+is, A)n+1x, x′

〉
ds (x ∈ X, x′ ∈ X ′)

and ‖R(α+ it, A)n‖ ≤ nC for each t ∈ R.

Proof. We have d
dtR(α+it, A)n = −niR(α+it, A)n+1, hence (5.4) yields an operator

Q : X → X ′′ such that

〈R(α+ it, A)nx, x′〉 − 〈Qx, x′〉 = −
∫ t

−∞
ni
〈
R(α+ is, A)n+1x, x′

〉
ds
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for all t ∈ R and x ∈ X,x′ ∈ X ′. It follows that

sup
t∈R
‖R(α+ it, A)n‖ ≤ nC + ‖Q‖ <∞.

Moreover, we have R(α + it, A)nx → Qx as t → −∞ in the weak∗-sense on X ′′

for each x ∈ X. By Lemma A.1 we have R(α,A)nR(α + it, A)nx → 0 in norm. It
follows that

(R(α,A)′′)
n
Qx = QR(α,A)nx = 0 (x ∈ X).

If dom(A) is dense, then Q vanishes on the dense subspace dom(An), hence Q = 0.
If X is reflexive then X ′′ = X, and R(α,A)′′ = R(α,A) is injective, whence also
Q = 0. �

We now investigate the consequences of a weak bounded variation condition
(5.4) for the functional calculus. We need to introduce the notion of m-bounded
calculus. The corresponding notion on strips is equivalent to bounded H∞-calculus
[3, Proposition 2.7]. We shall see in Section 7 below that (strong) 1-bounded calculus
on half-planes does not imply bounded H∞-calculus even for operators on Hilbert
space.

Definition 5.3. Let A be an operator of half-plane type ω on a Banach space X,
and let β < ω and m ∈ N0. Then A is said to have m-bounded calculus on Rβ if

there is K ≥ 0 such that f (m)(A) ∈ L(X) and

‖f (m)(A)‖ ≤ K ‖f‖H∞(Rβ) for all f ∈ H∞(Rβ).

Let K(A, β,m) be the least such K.

It may not be immediately clear that this definition is meaningful. The problem
is resolved by the Cauchy inequalities [27, Corollary 4.3, p.48].

Lemma 5.4. Let f ∈ H∞(Rα) and m ∈ N. For a ∈ Rα and 0 < r < Re(a)− α,

|f (m)(a)| ≤ m!

rm
sup{|f(z)| | |z − a| = r}.

Hence f (m) ∈ H∞(Rβ) with

(5.5) ‖f (m)‖H∞(Rβ) ≤
m!

(β − α)m
‖f‖H∞(Rα) .

Examples 5.5. For λ ∈ C and t ≥ 0, define

fλ(z) =
1

λ− z
, et(z) = e−tz.

Then fλ ∈ H∞(Rβ) if β > Reλ and et ∈ H∞(Rβ) for all β ∈ R. If A has m-bounded
calculus on Rβ , then∥∥R(λ,A)m+1

∥∥ ≤ K(A, β,m)

m!(β − Reλ)
(Reλ < β),

‖exp(−tA)‖ ≤ K(A, β,m)

tm
e−tβ (t > 0).

We can now establish the connection between the weak bounded variation con-
dition (5.4) and the new notion of m-bounded calculus.

Theorem 5.6. Let A be a densely defined operator of half-plane type on a Banach
space X, and let m ≥ 1. Then the following assertions hold.

a) If α < s0(A) and there is a constant C such that

(5.6)

∫
R

∣∣〈R(α+ it, A)m+1x, x′〉
∣∣ dt ≤ C ‖x‖ ‖x′‖ (x ∈ X,x′ ∈ X ′),
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then A has m-bounded calculus on Rα, and

K(A,α,m) ≤ m!

2π
C(A,α,m).

b) If β < s0(A) and A has (m− 1)-bounded calculus on Rβ, then (5.6) holds for
each α < β, with

C =
π

m! (β − α)
K(A, β,m− 1).

When (5.6) holds for some C, we shall denote the least such C by C(A,α,m).

Proof. a) Let β < α and f ∈ E(Rβ). It is easily derived from Lemma 5.4 that

f (m) ∈ E(Rβ′) for each β′ > β. Hence we can compute f (m)(A) as

f (m)(A) =
1

2πi

∫
Re z=α

f (m)(z)R(z,A) dz =
−1

2π

∫
R
f (m)(α+ it)R(α+ it, A) dt.

Since R(·, A) is uniformly bounded on α + iR and f (k)(α + it)→ 0 as |t| → ∞ for
each k ≥ 0, we can integrate by parts m times to obtain

f (m)(A) =
−1

2π

∫
R
f (m−1)(α+ it)R(α+ it, A)2 dt

= · · · = −m!

2π

∫
R
f(α+ it)R(α+ it, A)m+1 dt.

Now it follows from (5.6) that

‖f (m)(A)‖ ≤ Cm!

2π
‖f‖H∞(Rα) .

Next, we employ an approximation argument of a standard type. Let f ∈ H∞(Rβ)
and define ϕk(z) := k2(k − β + z)−2 for k ≥ 1. Then

1) fϕk ∈ E(Rβ),

2) (fϕk)(m)(z)→ f (m)(z) as k →∞,

3) ‖fϕk‖H∞(Rα) ≤ ‖f‖H∞(Rα),

4) supk ‖(fϕk)(m)‖H∞(Rα) <∞.

By the Convergence Lemma (Theorem 3.1),

‖f (m)(A)‖ ≤ sup
k
‖(fϕk)(m)(A)‖ ≤ Cm!

2π
‖f‖H∞(Rα).

In the last step we start with f ∈ H∞(Rα) and let fk(z) := f(z + 1/k). By what
we have proved already,

‖f (m)
k (A)‖ ≤ Cm!

2π
‖fk‖H∞(Rα) ≤

Cm!

2π
‖f‖H∞(Rα) <∞.

The Convergence Lemma, again, yields that f (m)(A) ∈ L(X) with

‖f (m)(A)‖ ≤ Cm!

2π
‖f‖H∞(Rα) <∞,

as desired.
b) We fix α < β, x ∈ X, x′ ∈ X ′ and R > 0. Let ε be a measurable function

such that |ε(t)| = 1 and∣∣〈R(α+ it, A)m+1x, x′〉
∣∣ = 〈R(α+ it, A)m+1x, x′〉 · ε(t)

for all t ∈ R. Define

f(z) :=
1

m!

∫ R

−R

ε(t)

(α+ it− z)2
dt (Re z > β).
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Then f is an elementary function with

f (m−1)(z) =

∫ R

−R

ε(t)

(α+ it− z)m+1
dt (Re z > β).

Moreover,

|f(z)| ≤ 1

m!

∫
R

dt

(Re z − α)2 + t2
=

π

m! (Re z − α)
≤ π

m! (β − α)
(Re z > β).

Fubini’s theorem yields

f (m−1)(A) =

∫ R

−R
ε(t)R(α+ it, A)m+1 dt,

from which it follows that∫ R

−R

∣∣〈R(α+ it, A)m+1x, x′〉
∣∣ dt =

∫ R

−R
ε(t)

〈
R(α+ it, A)m+1x, x′

〉
dt

=
∣∣∣〈f (m−1)(A)x, x′

〉∣∣∣ ≤ K(A, β,m− 1) ‖f‖H∞(Rβ) ‖x‖ ‖x
′‖

≤ π

m! (β − α)
K(A, β,m− 1) ‖x‖ ‖x′‖ .

As R > 0 was arbitrary, b) is proved. �

Remark 5.7. We note that the assumption of dense domain in Theorem 5.6 is
needed only in part a), to pass from elementary functions to all H∞-functions.
Moreover, the proof shows that under the assumptions of a) one has ‖f (m)(A)‖ ≤
Cm!
2π ‖f‖H∞(Rα) if f (m) is elementary on a larger half-plane and f (j) vanishes at

α ± i∞ for all 0 ≤ j ≤ m − 1. An example of a function f that is not elementary
but satisfies these requirements is f(z) = (λ− z)−1 with Reλ < α.

6. Strong m-Bounded Calculus

Theorem 5.6 does not establish an equivalence of m-bounded calculus and weak
bounded variation estimates of the form (5.6), due to the “loss of order” in part
b). We shall see below that this phenomenon can be avoided when one considers
m-bounded calculus and estimates (5.6) with specified dependence of C(A,α,m)
and K(A,α,m) on α. This leads to the following definition.

Definition 6.1. An operator A has strong m-bounded calculus of type ω if A has
m-bounded calculus on Rβ for each β < ω, and there is C ≥ 0 such that∥∥∥f (m)(A)

∥∥∥ ≤ C

(ω − β)m
‖f‖H∞(Rβ) (f ∈ H∞(Rβ), β < ω).

Let us revisit Examples 5.5.

Examples 6.2. If A has strong m-bounded calculus of type ω, then one has∥∥R(λ,A)m+1
∥∥ ≤ C

m! (ω − β)m(β − Reλ)
(Reλ < β < ω).

The minimum on the right-hand side is attained at β = (mReλ+ ω)/(m+ 1) and
hence we obtain the Hille–Yosida estimate

(6.1)
∥∥R(λ,A)m+1

∥∥ ≤ Ce(m+ 1)

m!(ω − Reλ)m+1
(Reλ < ω).

By Corollary A.9 it follows that∥∥R(λ,A)k
∥∥ ≤ Ce(m+ 1)

m!(ω − Reλ)k
(Reλ < ω)

for all 1 ≤ k ≤ n; in particular, A is of strong half-plane type ω.
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Similarly, we have

‖exp(−tA)‖ ≤ C

tm(ω − β)m
e−tβ (t > 0, β < ω),

and minimizing the right-hand side over β < ω yields β = ω − m
t and

(6.2) ‖exp(−tA)‖ ≤ C em

mm
e−tω (t > 0).

In particular, if A is densely defined, then by Proposition 2.5 −A generates a C0-
semigroup.

For K(A, β,m) to behave like (ω − β)−m, the inequalities in Theorem 5.6 and
simple examples indicate that we expect C(A,α,m) to behave like (ω − α)−m. We
shall see in the next proposition that such an estimate is actually independent of
m (with varying constants, of course) and this will lead to a characterisation in
Theorem 6.4 below.

Proposition 6.3. Let A be an operator on a Banach space X and ω ∈ R such that
σ(A) ⊆ Rω . In addition, let m ≥ 1 and C ≥ 0 such that
(6.3)∫

R

∣∣〈R(α+ it, A)m+1x, x′〉
∣∣ dt ≤ C

(ω − α)m
‖x‖ ‖x′‖ (α < ω, x ∈ X,x′ ∈ X ′).

Then the following assertions hold.

a) If A is of half-plane type ω, then for each 1 ≤ k ≤ m+1

(6.4)
∥∥R(λ,A)k

∥∥ ≤ Ce(m+1)

2π(ω − Reλ)k
(Reλ < ω).

In particular, A is of strong half-plane type ω.

b) If X is reflexive then A is densely defined.

Moreover, under the additional hypothesis that A is densely defined the following
assertions hold:

c) For each 1 ≤ k ≤ m

(6.5)
∥∥R(λ,A)k

∥∥ ≤ Cm

(ω − Reλ)k
(Reλ < ω).

In particular, A is of strong half-plane type ω.

d) For each 1 ≤ k ≤ m and α < ω∫
R

∣∣〈R(α+ it, A)k+1x, x′〉
∣∣ dt ≤ Cm

k(ω − α)k
‖x‖ ‖x′‖ (x ∈ X,x′ ∈ X ′).

e) A has a strong k-bounded calculus of type ω for each 1 ≤ k ≤ m. More
precisely, one has

(6.6)
∥∥∥f (k)(A)

∥∥∥ ≤ Cm

2π

(k−1)!

(ω − α)k
‖f‖H∞(Rα) (f ∈ H∞(Rα), α < ω).

Proof. a) By Remark 5.7 it follows from (6.3) that
∥∥f (m)(A)

∥∥ ≤ (Cm!/2π) ‖f‖H∞(Rα)

for f(z) := (λ− z)−1 and Reλ < α < ω. This yields∥∥R(λ,A)m+1
∥∥ ≤ C

2π

1

(ω − α)m(α− Reλ)
(Reλ < α < ω).

As in (6.1), varying α here leads to∥∥R(λ,A)m+1
∥∥ ≤ C

2π

(m+ 1)m+1

mm

1

(ω − Reλ)m+1
≤ Ce(m+ 1)

2π(ω − Reλ)m+1
.

Now a) follows from Corollary A.9.
b) and c) If X is reflexive or A is densely defined then (6.5) follows from Lemma 5.2
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for k = m and then from Corollary A.9 for other values of k. In particular we have
that A − ω is sectorial, i.e., supλ<0 ‖λR(λ,A− ω)‖ ≤ Cm < ∞. It is a standard
result [19, Prop.2.1.1] that A must be densely defined if X is reflexive.
d) We employ downward induction, the case k = m being the hypothesis (6.3). For
the step from k to k−1 let x ∈ X and x′ ∈ X ′; then a) together with Lemma 5.2
and Fubini’s theorem yield∫

R

∣∣〈R(α+ it, A)kx, x′〉
∣∣ dt = k

∫
R

∣∣∣〈∫ α

−∞
R(u+ it, A)k+1x, x′〉du

∣∣∣dt
≤ k

∫ α

−∞

∫
R

∣∣〈R(u+ it, A)k+1x, x′〉
∣∣ dtdu ≤ kmC

k

(∫ a

−∞

du

(ω − u)k

)
‖x‖ ‖x′‖

=
mC

(k − 1)(ω − α)k−1
‖x‖ ‖x′‖.

e) follows directly from d) and Theorem 5.6. �

Proposition 6.3 enables us to prove the following major result. The fact that the
condition (i) (for m = 1) implies that ω − A generates a bounded C0-semigroup
was proved in [12, 26] and it is known as the Gomilko-Shi-Feng theorem. An early
version can be found in [21, Theorem 12.6.1].

Theorem 6.4. Let ω ∈ R and let A be a densely defined operator on a Banach
space X such that Lω ⊆ %(A). The following assertions are equivalent for m ≥ 1:

(i) There exists a constant Cm such that∫
R

∣∣〈R(α+ it, A)m+1x, x′〉
∣∣ dt ≤ Cm

(ω − α)m
‖x‖ ‖x′‖ (x ∈ X, x′ ∈ X ′, α < ω);

(ii) A is of half-plane type ω and has strong m-bounded calculus of type ω;
(iii) A is of half-plane type ω and has strong 1-bounded calculus of type ω.

In particular, properties (i) and (ii) are independent of m ≥ 1. They imply that −A
generates a C0-semigroup T with ‖T (t)‖ ≤Me−ωt for some M .

Proof. (i)⇒(ii),(iii): This follows from Proposition 6.3.
(iii)⇒(ii): Let α < β < ω and f ∈ H∞(Rα). We apply the strong 1-bounded
calculus to f (m−1) ∈ H∞(Rβ) and employ (5.5) to obtain

‖f (m)(A)‖ ≤ K

ω − β
‖f (m−1)‖H∞(Rβ) ≤

KCm−1(m−1)!

(ω − β)(β − α)m−1
‖f‖H∞(Rα).

Optimising with respect to β yields

‖f (m)(A)‖ ≤ KCm−1em!

(ω − α)m
‖f‖H∞(Rα).

(ii)⇒(i): Suppose we have

‖fm(A)‖ ≤ C

(ω − β)m
‖f‖H∞(Rβ) (β < ω, f ∈ H∞(Rβ)).

Then by Theorem 5.6.b) with m replaced by m+ 1,∫
R

∣∣〈R(α+ it, A)m+2x, x′
〉∣∣ dt ≤ πC

(m+ 1)! (β − α)(ω − β)m
‖x‖ ‖x′‖

for α < β < ω. Optimising with respect to β yields∫
R

∣∣〈R(α+ it, A)m+2x, x′
〉∣∣ dt ≤ πCe

m! (ω − α)m+1
‖x‖ ‖x′‖ .

Now it follows from Proposition 6.3.d) with m replaced by (m+ 1) and k = m that∫
R

∣∣〈R(α+ it, A)m+1x, x′
〉∣∣ dt ≤

πCe
(
1 + 1

m

)
m! (ω − α)m

‖x‖ ‖x′‖ .
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Finally, suppose that (i)-(iii) hold. Then by Example 6.2 and the density of
dom(A) in X we obtain that −A generates a C0-semigroup T with ‖T (t)‖ ≤Me−ωt

for some M ≥ 1. �

Corollary 6.5. Let ω ∈ R and let A be a densely defined operator on a Banach
space X such that Lω ⊆ %(A). Assume that there is a constant C such that, for all
α < ω,

(ω − α)

∫
R
‖R(α+ it, A)x‖2 dt ≤ C‖x‖2 (x ∈ X),

(ω − α)

∫
R
‖R(α+ it, A)′x′‖2 dt ≤ C‖x′‖2 (x′ ∈ X ′).

Then A has strong 1-bounded calculus of type ω.

Proof. It is a standard application of the Cauchy–Schwarz inequality that the as-
sumptions imply (i) of Theorem 6.4 for m = 1. �

The following generalisation is proved in the same way.

Theorem 6.6. Let ω ∈ R and let A be a densely defined operator on a Banach
space X such that Lω ⊆ %(A). Let in addition m ≥ 1 and g : (−∞, ω)→ [0,∞) be
a function satisfying g(α) = O(|α|−m) as α→ −∞ and∫

R

∣∣〈R(α+ it, A)m+1x, x′
〉∣∣ dt ≤ g(α)‖x‖ ‖x′‖ (x ∈ X,x′ ∈ X ′, α < ω).

Then −A generates a C0-semigroup T with

‖T (t)‖ ≤ m!e

2π
g(ω − t−1)t−me−ωt (t > 0).

Proof. From Lemma 5.2 we obtain

‖R(α+ it, A)m‖ ≤ mg(α) = O
(
|α|−m

)
.

Hence Corollary A.9 implies that A is of (strong) half-plane type ω. Now we can
apply Theorem 5.6 to obtain

‖f (m)(A)‖ ≤ m!

2π
g(α) (α < ω, f ∈ H∞(Rα)).

Inserting f(z) = e−tz and optimizing over α < ω yields∥∥e−tA∥∥ ≤ m!

2π
t−m inf

α<ω
g(α)e−tα ≤ m!e

2π
g
(
ω − t−1

)
t−me−ωt.

(The last inequality comes from specializing α := ω − t−1.) �

Remarks 6.7. 1) For ω = 0, m = 1 and g(α) = M |α|−1(1 + |α|−d), Theorem 6.6
recovers a result of Eisner [10] on semigroups with polynomial growth.

2) The converse of the Gomilko-Shi-Feng theorem holds in Hilbert spaces (see
Theorem 7.1), but it was observed in [12, p.296] that it is not true in general
Banach spaces or even in reflexive spaces. Thus there exist operators A such
that −A generates a C0-semigroup but A does not have 1-bounded calculus
on any half-plane.

3) The property (i) of Theorem 6.4 for m = 1 is a natural form of weak bounded
variation for half-plane operators. Actually, it is somewhat stronger than the
corresponding properties for sectors and strips, because of the dependence on
α. For sectors and strips, weak bounded variation for a single value of the
corresponding parameter implies bounded H∞-calculus [7, 23, 3]. We shall see
in Example 7.2 that strong 1-bounded caclulus on half-planes does not imply
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bounded ∞-calculus even for operators on Hilbert space. Thus bounded H∞-
calculus on half-planes cannot be characterised by weak bounded variation of
the resolvent in the way that it can for strips and sectors.

7. Operators of Half-Plane Type on Hilbert Spaces

It was observed in [12] and [26] that the converse of the Gomilko-Shi-Feng theo-
rem is true in Hilbert spaces. We present a reformulation of this fact in which the
implication (i) =⇒ (iii), together with Examples 5.5, recovers the Gearhart–Prüss
theorem. This says that the exponential growth bound of a C0-semigroup with
generator −A, on a Hilbert space, equals −s0(A) [2, Theorem 5.2.1].

Theorem 7.1. Let A be a densely defined operator of half-plane type on a Hilbert
space H. The following properties are equivalent:

(i) −A generates a C0-semigroup on H;
(ii) A has strong 1-bounded calculus on a half-plane;
(iii) A has strong 1-bounded calculus of type ω for each ω < s0(A).

Proof. The implication (iii)⇒(ii) is trivial, and the implication (ii)⇒(i) follows from
Theorem 6.4. For the proof of the implication (i)⇒(iii) suppose that −A generates
T . Then there exist M ≥ 1 and ω0 ∈ R with ‖T (s)‖ ≤ Me−ω0s for s ≥ 0. For
α < ω0 and x ∈ X we have

R(α+ it, A)x = −
∫ ∞

0

e−itseαsT (s)x ds

and hence by Plancherel’s theorem
(7.1)

‖R(α+ it, A)x‖L2(R;dt) =
√

2π ‖eαsT (s)x‖L2(R+;ds) ≤M‖x‖
√

π

ω0 − α
(x ∈ H).

Now let ω < s0(A) and take α < min(ω, ω0). By definition of s0(A), R(·, A) is
uniformly bounded on ω + iR. Hence, from the resolvent identity

R(ω + it, A)x = (I + (α− ω)R(ω + it, A))R(α+ it, A)x (t ∈ R)

it follows that ‖R(ω + it, A)x‖L2(R,dt) ≤ C ‖x‖ for some constant C. Plancherel’s

theorem again yields

‖eωsT (s)x‖L2(R+,ds)
≤
√

2πC ‖x‖ .

Convolving with eαsT (s), using ‖eαsT (s)‖ ∈ L2(R+) yields

eωt − eαt

ω − α
‖T (t)x‖ =

∥∥∥∥∫ t

0

eα(t−s)T (t− s)eωsT (s)xds

∥∥∥∥ ≤ C ′ ‖x‖ (t ≥ 0).

Consequently, ‖T (t)‖ ≤ Mωe
−ωt (cf. Datko’s theorem [11, Theorem V.1.8]). It

follows that we can replace ω0 by ω in (7.1) (with a different M , of course). Passing
to adjoint operators, we obtain similarly

‖R(α+ it, A)∗y‖L2(R;dt) =
√

2π ‖eαsT (s)∗y‖L2(R+;ds)

≤Mω‖y‖
√

π

ω − α
(y ∈ H,α < ω).

Now Corollary 6.5 applies, and A has strong 1-bounded calculus of type ω. �

By the Boyadzhiev–deLaubenfels theorem [5, 14, 16, 20] a densely defined op-
erator on a Hilbert space generates a C0-group if and only if it has a bounded
H∞-calculus on a vertical strip. The following example shows that the analogue
involving semigroups and H∞-calculus on half-planes does not hold. In particu-
lar, strong 1-bounded calculus does not imply bounded H∞-calculus, in the case of
half-planes.
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Example 7.2. Let X be a separable Hilbert space. Using the theory of conditional
Schauder bases, Le Merdy [24] has shown that there exists an operator A on X such
that

1) A is densely defined, invertible and sectorial of angle 0, and

2) A does not have BIP (bounded imaginary powers).

(See also [19, Cor.9.1.8] for this construction.) Then −A generates a bounded
holomorphic C0-semigroup. For α < 0, because A is invertible, A−α does not have
BIP [19, Proposition 3.5.5]. Consequently A does not have a bounded H∞(Rα)-
calculus for any α < 0.

A sectorial operator on a Hilbert space that has bounded H∞-calculus on some
sector has it on each sector of angle larger than the angle of sectoriality. The “rea-
son” is a theorem of Cowling, Doust, McIntosh and Yagi based on an approximation
result for analytic functions on strips [19, Thm.5.4.1], together with the Gearhart-
Prüss theorem. In a sense, Theorem 7.1 is the analogue for operators of half-plane
type. We conjecture that the corresponding result involving H∞-calculus (in place
of strong 1-bounded calculus) is false in general, but we cannot prove that at this
point. The best we can achieve here is the following positive result.

Proposition 7.3. Let A be a densely defined operator of half-plane type on a Hilbert
space H such that A has a bounded H∞-calculus on some right half-plane. If the
semigroup generated by −A is holomorphic then A has bounded H∞-calculus Rα for
each α < s0(A).

Proof. For β < s0(A), A − β is invertible and sectorial of angle less than π/2.
Moreover, A has bounded H∞-calculus on Rβ if and only if A − β has bounded
H∞-calculus on R0 = Sπ/2. (Note that by Proposition 2.8 the half-plane calculus
coincides with the sectorial calculus.) Now, by McIntosh’s theorem [19, Thm.7.3.1],
A−β has bounded H∞-calculus on Sπ/2 if and only if A−β has bounded imaginary
powers. But by [19, Proposition 3.5.5], this is independent of β. �

Suppose that −A generates a C0-semigroup of contractions on H. Then A has
contractive H∞(Rα)-calculus for each α < 0. This is basically equivalent to the
classical von Neumann inequality for contractions on Hilbert spaces and can be
proved (via the convergence lemma) as in [19, p.179].

It follows that if −A generates T , and T is similar to a quasi-contraction semi-
group (contractive after shifting), then A has bounded H∞-calculus on a right half-
plane. The converse, however, is false.

Example 7.4. In [25, Prop.4.8] Le Merdy modifies the famous counterexample of
Pisier to Halmos’ problem to give an example of an operator A on a Hilbert space
H with the following properties:

1) −A generates a bounded C0-semigroup T on H and is injective;

2) There is c ≥ 0 such that ‖r(A)‖ ≤ c ‖r‖∞ for each rational function r that is
bounded on R0;

3) T is not similar to a contraction semigroup.

By approximating holomorphic functions by rational functions [19, Prop.F.3] it
follows from the convergence lemma that A has a bounded H∞-calculus on Rα for
each α < 0. Finally, one can employ Chernoff’s trick as in [19, Lemma 7.3.14] to
obtain an example where T is not even similar to a quasi-contraction semigroup.

Appendix A. Asymptotics of Resolvents

In this appendix we prove some results on the asymptotic behaviour of the re-
solvent mapping z 7→ R(z,A) for some (in general unbounded) operator A on a
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Banach space X. More precisely, we suppose that D ⊆ %(A) is a subset of the
resolvent set of A such that the point at infinity is an accumulation point of D, i.e.,

{z ∈ D | |z| ≥ r} 6= ∅ for each r > 0;

and we shall look at the asymptotic behaviour of Rz as z →∞, by which we mean
z ∈ D and |z| → ∞.

For simplicity and because the operator A is rather unimportant in this context,
we abbreviate Rz := R(z,A). The operator family (Rz)z∈D satisfies the resolvent
identity

(A.1) (z − w)RzRw = Rw −Rz (z, w ∈ D),

the basis of all following arguments.
We begin with a technical result that contains all the essence. Let Y be a second

Banach space and fix a vector space topology on L(Y ;X) such that for each w ∈ D
the operator S 7→ RwS on L(Y ;X) is continuous. (For example, the norm topology
and the weak and strong operator topology satisfy this.) By Φ : D → L(Y ;X) we
denote any operator-valued function on D.

Lemma A.1. With the terminological conventions from above, let n ∈ N0, and
suppose that RnzΦz/z → 0 and Φz/z

n → 0 as |z| → ∞, z ∈ D. Then for any fixed
w ∈ D

RnwR
n
zΦz → 0 as |z| → ∞, z ∈ D.

Proof. The proof is by induction on n ∈ N0. If n = 0 then there is nothing to prove.
So suppose n ≥ 1 and the claim to be true for n − 1 in place of n. Then by the
resolvent identity

(A.2) RwR
n
zΦz = Rn−1

z

RwΦz
z − w

− RnzΦz
z − w

By hypothesis, the second summand tends to 0 as z → ∞. If we define Ψz :=
RwΦz/(z − w), then Ψz/z

n−1 → 0 as z →∞. Moreover,

Rn−1
z Ψz/z =

(
RwR

n
zΦz +

RnzΦz
z − w

)
/z → 0 as z →∞

by (A.2) and the hypothesis. So we can apply the induction hypothesis with Ψz in
place of Φz and conclude that

Rn−1
w Rn−1

z

RwΦz
z − w

= Rn−1
w Rn−1

z Ψz → 0 (z →∞).

Now we multiply (A.2) by Rn−1
w from the left, and the claim follows. �

We are now in position to prove our main result.

Theorem A.2. With the terminological conventions from above, let n, j ∈ N0, and
suppose that RnzΦz/z

j → 0 and Φz/z
n → 0 as |z| → ∞, z ∈ D. Then

Rjnw R
n
zΦz → 0 as |z| → ∞, z ∈ D.

Proof. We proceed by induction over j ≥ 0. For j = 0 there is nothing to prove.
Suppose that RnzΦz/z

j+1 → 0. Then by the induction hypothesis (with Φz/z in
place of Φ) Rnjw R

n
zΦz/z → 0. Now we apply Lemma A.1 with Rnjw Φz in place of Φz

to obtain RnwR
nj
w R

n
zΦz → 0. �

Remark A.3. Theorem A.2 can be interpreted in terms of extrapolation spaces.
Namely, for w ∈ D fixed, the n-th extrapolation norm on X is given by ‖x‖−n :=
‖Rnwx‖, x ∈ X. (A different choice of w leads to an equivalent norm.) Theorem A.2
roughly says that if RnzΦz has only polynomial growth as |z| → ∞ along D, then it
must tend to 0 in some (sufficiently high) extrapolation norm.



HOLOMORPHIC FUNCTIONAL CALCULUS APPROACH TO SEMIGROUPS 21

Corollary A.4. Let Q(z) =
∑m
j=0 z

jQj be a polynomial in z with coefficients

Qj ∈ L(Y ;X). If RnzΦz − Q(z) → 0 and Φz/z
n → 0 as |z| → ∞, z ∈ D, then

Q = 0.

Proof. By hypothesis, RnzΦz/z
m → Qm. And Φz/z

n+m → 0 since m ≥ 0. By
Theorem A.2 it follows that RnwQm = 0, whence Qm = 0, since Rw is injective.
Inductively, one obtains Qj = 0 for j = m− 1,m− 2, . . . , 0, i.e., Q = 0. �

Remark A.5. Let us stress the fact that our formulation covers a wide range of
individual results, by varying Y and the topology on L(X). Clearly the norm,
strong and weak operator topology are admissible choices. If one takes Y = C to
be 1-dimensional, then L(Y ;X) is essentially equal to X, and one can interpret Φz
as an element of X. In particular, for the case Φz := ϕ(z)x for a fixed vector x ∈ X
and a scalar function ϕ, we obtain results about the asymptotic behaviour of the
“individual” orbit z 7→ Rnzx.

Corollary A.6. If supz∈D ‖Rnz ‖ < ∞, then for each w ∈ D RnwR
n
z → 0 in norm

as z ∈ D, |z| → ∞. If in addition dom(A) is dense, then Rnz → 0 strongly.

Proof. We apply Lemma A.1 with Φ = I and conclude that RnzR
n
w → 0 in norm.

Note that ran(Rw) = dom(A). If this is dense, then by induction ran(Rnw) =
dom(An) is dense as well. Then the claim follows by approximation. �

Let us apply our results to sectorial operators and operators of (strong) half-plane
type. An operator A is sectorial if (−∞, 0) ⊆ %(A) and supz<∞ ‖zR(z,A)‖ < ∞.
The next result shows that “higher-order” sectoriality is equivalent to sectoriality.

Proposition A.7. Let M ≥ 0 and n ∈ N, and let A be a closed operator on a
Banach space X such that (−∞, 0) ⊆ %(A) and

(A.3)
∥∥R(z,A)k

∥∥ ≤ M

|z|k
(z < 0)

for k = n. Then (A.3) holds for all 1 ≤ k ≤ n. In particular, A is sectorial.

Proof. It suffices to prove (A.3) for k = n under the assumption that it holds
for k = n + 1. Since −nRn+1

z is the derivative of Rnz , the estimate (A.3) for
k = n+ 1 shows that Rnz has integrable derivative on (−∞, 0). In particular,
Q := limz→−∞Rnz exists by Cauchy’s criterion, and

Rnz −Q = −
∫ z

−∞
nRn+1

t dt (−∞ < z < 0).

It follows from Corollary A.4 that Q = 0; taking norms yields

‖Rnz ‖ ≤ −
∫ z

−∞
n
∥∥Rn+1

t

∥∥ dt ≤Mn

∫ z

−∞
|t|n+1

dt =
M

|z|n

for ∞ < z < 0. �

By rotating and shifting, we immediately obtain the following corollaries.

Corollary A.8. Let θ1, θ2 ∈ R and let S := {0 6= z ∈ C | θ1 ≤ arg z ≤ θ2} be a
corresponding sector in the complex plane. Let M ≥ 0 and n ∈ N, and let A be an
operator such that S ⊆ %(A) and

sup
z∈S
‖znR(z,A)n‖ ≤M.

Then supz∈S
∥∥[zkR(z,A)k

∥∥ ≤M for each 1 ≤ k ≤ n.

Proof. Fix θ ∈ [θ1, θ2] and apply Proposition A.7 to −e−iθA in place of A. �
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Corollary A.9. Let M ≥ 0, n ∈ N and ω ∈ R, and let A be an operator such that
{z ∈ C | Re z < ω} ⊆ %(A) with

‖R(z,A)n‖ ≤ M

(ω − Re z)n
(Re z < ω).

Then ∥∥R(z,A)k
∥∥ ≤ M

(ω − Re z)k
(Re z < ω).

for each 1 ≤ k ≤ n.

Proof. Fix θ ∈ R and apply Proposition A.7 to A+ (ω + iθ). �
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