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All hypothesized spaces are completely regular and T1. We recall that a space X is:
zero-dimensional (strongly zero-dimensional) iff it has a base consisting of clopen sets
(iff βX is zero-dimensional, i.e., iff for every continuous function f :X → [−1, 1] and
subsets A,B of X such that f [A] = {−1} and f [B] = {1}, there exists a continuous
function c:X → {−1, 1} such that c[A] = {−1} and c[B] = {1}); and it is an F -space
iff for every continuous function f :X → R there is a continuous function k:X → R
such that f = k · |f |. Numerous characterizations and examples of spaces illustrating
these concepts and some implications among them can be found in Section 6.2 of [R.
Engelking, General topology, translated from the Polish by the author, second edition,
Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989; MR1039321] ([E]) and in 14.25 of
[L. Gillman and M. Jerison, Rings of continuous functions, reprint of the 1960 edition,
Graduate Texts in Mathematics, No. 43, Springer, New York, 1976; MR0407579] ([GJ]).
The main result in the article being reviewed is a very nice construction which answers
in the affirmative a question discussed in the 1980s, mentioned in a conference talk by
A. Dow in the 1990s, and raised in print in 2016 by W. McGovern in [“Zero-dimensional
F -space which is not strongly zero-dimensional”, mathoverflow.net/questions/239324]:
Is there a zero-dimensional F -space which is not strongly zero-dimensional? One might
be inclined to think this question cannot have an affirmative answer since satisfaction of
the last definition above implies k[{x : f(x) < 0}] = {−1} and k[{x : f(x) > 0}] = {1};
however, compact connected F -spaces exist (see 14.27 of [GJ]).

The authors remark that their construction was inspired by a certain example (ii)
which was inspired by another example (i). The example (i), of a subspace of ω1× [0, 1]
by C. H. Dowker in 1955, also described in 6.2.20 of [E], proved that not every zero-
dimensional space is strongly zero-dimensional. The construction (ii), a quotient of
ω1 × A, where A denoted Alexandroff’s split interval, was one example K. P. Hart
developed and presented in [“Is Stone-Čech compactification of 0-dimensional space also
0-dimensional?”, mathoverflow.net/questions/93719] to answer the following question
raised there by F. Dashiell: What is an example of a locally compact zero-dimensional
space which is not strongly zero-dimensional? Although the authors use the term
“inspired”, much work was required for them to develop their space and variations on
it. In particular, since no F -space can contain a convergent sequence of distinct points
(see [GJ, 14N]), the building space ω1×A needed to be replaced.

While the authors’ main construction is too complicated to outline here, a brief
(inadequate) indication of it is the following: Denoting the Gδ-modification of a space
Y as (Y )δ, they replace ω1 in (ii) with (ω2)δ and replace A with the split interval
over a suitable selected ordered continuum K having a dense subset which can be
enumerated as 〈dα : α < ω2〉, where each tail Tα = {dβ : β > α} is dense in K. They next
define for each α≤ ω2, Kα = {〈x, i〉 ∈K × 2 : if x /∈ Tα then i= 0} and Xα = (ω×Kα)∗,
where ∗ denotes the Čech-Stone remainder, and each Kα is topologized so that more
and more neighboring points are identified as α increases. Then the authors present a
well organized and involved proof that X =

⋃
{{α}×Xα : α < ω2} is a zero-dimensional
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F -space which is not strongly zero-dimensional.
In the final section of the article, the authors present some variations of their con-

struction which produce spaces with additional properties, such as local compactness,
and they conclude by raising some questions.

For a more detailed (and entertaining) source of information about their construction
and what led them to discover it, the reviewer recommends readers access the sec-
ond author’s F -space talk available at webpages.charlotte.edu/adow/CarolinaSeminar.
html. (The YouTube link for this particular talk is www.youtube.com/watch?v=
rGoJxhqL7rY.) R. M. Stephenson, Jr.
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