An *F*-space Tá scéilín agam

K. P. Hart

Faculty EEMCS TU Delft

Cyberspace, 13 August 2021: 20:00-21:00 (UTC)

The problem

Is there a zero-dimensional F-space that is not strongly zero-dimensional?

The terms:

Zero-dimensional the clopen sets form a base (plus T_1)

Strongly zero-dimensional if two sets can be separated by a continuous function to \mathbb{R} then they can be separated by a continuous function to $\{-1, 1\}$. A bit more about that For normal spaces: disjoint closed sets can be separated by clopen sets. For Tychonoff spaces: the Čech-Stone compactification is zero-dimensional.

The problem

F-space if $f : X \to \mathbb{R}$ is continuous then there is (another) continuous function $k : X \to \mathbb{R}$ such that $f = k \cdot |f|$.

That almost looks like strong zero-dimensionality (picture).

That picture was misleading; there are (compact) connected *F*-spaces (better picture).

Zero-dimensional implies strongly zero-dimensional for

Compact spaces: just like "regular implies normal"

Lindelöf spaces: same reason (Lemma 1.5.15 in Engelking's book) Hence in particular: separable metrizable spaces

Examples

Dowker's example: a subspace M of $\omega_1 \times [0, 1]$ that is normal and zero-dimensional, but not strongly zero-dimensional. (More about this example later.)

Prabir Roy's metrizable space that is zero-dimensional but not strongly so. So separable is really necessary. (Really: John Kulesza has an example of weight \aleph_1 .)

Jun Terasawa made maximal almost disjoint families whose Ψ -spaces could have arbitrarily large covering dimension.

By having *n*-cubes, or even a Hilbert cube, in their Čech-Stone remainders.

The question

Why only now?

The question for *F*-spaces must have been around long but we haven't found any explicit statement before five years ago on MathOverFlow. With this comment: "If I remember correctly, I have at a conference heard Alan Dow

refer to this problem as an open problem."

As this was the second-order inspiration for our example we'll look at this one first. Take \aleph_1 many cosets of \mathbb{Q} in \mathbb{R} , say $\langle Q_\alpha : \alpha \in \omega_1 \rangle$. (But not \mathbb{Q} itself.) We abbreviate $\bigcup_{\beta \ge \alpha} Q_\beta$ as T_α .

Define

$$M = \big\{ \langle \alpha, x \rangle : \alpha \in \omega_1 \text{ and } x \notin T_\alpha \big\} \subseteq (\omega_1 + 1) \times [0, 1]$$

so the set of xs with $\langle \alpha, x \rangle \in M$ grows with α .

Properties of M: zero-dimensional for $\langle \alpha, x \rangle$ use vertical intervals with end points in Q_{α} normal Pressing Down Lemma

not strongly zero-dimensional M is C^* -embedded in $M \cup (\{\omega_1\} \times [0,1])$

Dowker's example *M* modified

We keep the notation but use quotients, not subspaces. Let \mathbb{A} be Alexandroff's split interval; that is,

$$\mathbb{A} = \{ \langle x, i \rangle \in [0,1] \times 2 : (x = 0 \rightarrow i = 1) \land (x = 1 \rightarrow i = 0) \}$$

ordered lexicographically (with order topology).

Take the following quotient of $(\omega_1 + 1) \times \mathbb{A}$:

$$N^+ = \left\{ \left\langle lpha, \left\langle x, i \right\rangle \right\rangle : \text{if } x \notin T_lpha \text{ then } i = 0
ight\}$$

meaning: identify $\langle \alpha, \langle x, 0 \rangle \rangle$ and $\langle \alpha, \langle x, 1 \rangle \rangle$ whenever $x \notin T_{\alpha}$. $T_{\omega_1} = \emptyset$, so at ω_1 we have [0, 1].

Dowker's example *M* modified

So: more and more neighbours are identified as we go out to ω_1 . At ω_1 we identify all neighbours and get [0, 1]. We let $N = N^+ \setminus (\{\omega_1\} \times [0, 1])$.

Properties of N:

zero-dimensional for $\langle \alpha, \langle x, i \rangle \rangle$ use vertical intervals with end points in Q_{α} normal Pressing Down Lemma (or: the quotient map is closed) not strongly zero-dimensional N is C^* -embedded in N^+ locally compact clear; this was the reason for the modification

$\langle Theme music from Jaws \rangle$

We start with an ordered continuum K with a dense subset D that is enumerated as $\langle d_{\alpha} : \alpha \in \omega_2 \rangle$ in such a way that every tail $T_{\alpha} = \{ d_{\beta} : \beta \ge \alpha \}$ is dense in K.

If you like $\neg CH$ do like Dowker: K = [0, 1] and take \aleph_2 many cosets of \mathbb{Q} $(Q_{\alpha} \cap (0, 1) = \{d_{\omega \alpha + n} : n \in \omega\}).$

If you like ZFC better take $L = (\omega_2^* + \omega_2)^{<\omega}$, ordered suitably lexicographically to get a densely ordered set of cardinality \aleph_2 in which every interval has cardinality \aleph_2 as well. Let K be the Dedekind completion of L; then L itself is the required dense set.

We let

$$\mathcal{K}_{lpha} = \left\{ \langle x, i
angle \in \mathcal{K} imes 2 : ext{if } x \notin \mathcal{T}_{lpha} ext{ then } i = 0
ight\}$$

The larger α the fewer points are split, and $K_{\omega_2} = K$ (and $T_{\omega_2} = \emptyset$).

We take a quotient of $(\omega_2 + 1) \times K_0$, as above:

$$N^+ = \left\{ \left\langle lpha, \left\langle x, i \right\rangle \right\rangle : \text{if } x \notin T_lpha \text{ then } i = 0
ight\}$$

Then $N = N^+ \setminus (\{\omega_2\} \times K)$ is just like our modification of Dowker's M. Except that it is not an F-space. $\langle \mathsf{Theme\ music\ from\ Jaws,\ but\ louder} \rangle$

First: $\omega_2 + 1$ has too many convergent sequences; we replace it by its G_{δ} -modification $(\omega_2 + 1)_{\delta}$.

Second: ordered compacta have too many convergent sequences; we replace them by $\check{\mathsf{C}}\mathsf{ech}\text{-}\mathsf{Stone}$ remainders.

 $ig\langle \mathsf{T}\mathsf{heme} \mathsf{ music} \mathsf{ from} \mathsf{ Jaws, still louder}ig
angle$

Our starting point is $(\omega_2 + 1)_{\delta} \times \beta(\omega \times K_0)$.

We need some maps for administrative purposes:

- ▶ $q_{\beta,\alpha}: K_{\beta} \to K_{\alpha}$, where $\beta < \alpha$, is the natural map that identifies $\langle d_{\gamma}, 0 \rangle$ and $\langle d_{\gamma}, 1 \rangle$ when $\beta \leq \gamma < \alpha$;
- q_{α} abbreviates $q_{0,\alpha}$.

 \langle Theme music from Jaws, really loud now \rangle

We have the maps $Q_{\alpha} : \beta(\omega \times K_0) \to \beta(\omega \times K_{\alpha})$ induced by the maps q_{α} . These induce a map Q from $(\omega_2 + 1)_{\delta} \times \beta(\omega \times K_0)$ onto

$$Y = \bigcup_{lpha \leqslant \omega_2} \{lpha\} imes eta(\omega imes K_lpha)$$

We give Y the quotient topology that it gets from the product and Q. Fairly elementary: Q is a closed map.

Alas, Y is not an F-space, because it contains copies of the K_{α} .

 $\left\langle \text{Theme music from Jaws, crescendo} \right\rangle$

For every α we let $X_{\alpha} = (\omega \times K_{\alpha})^*$ (Čech-Stone remainder of course).

Our space is

$$X = \bigcup_{\alpha \in \omega_2} \{\alpha\} \times X_{\alpha}$$

and we let $X^+ = X \cup (\{\omega_2\} \times X_{\omega_2})$, both as subspaces of the quotient of course.

Properties of X:

zero-dimensional for $\langle \alpha, x \rangle$ use vertical intervals with end points in T_{α} to generate the necessary clopen sets

not strongly zero-dimensional X is C^{*}-embedded in X⁺ and X_{ω_2} is one-dimensional

F-space given $f : X^+ \to \mathbb{R}$ there is for every α of uncountable cofinality a $\beta < \alpha$ such that $f \circ Q$ is constant on all sets of the form $(\beta, \alpha] \times \{x\}$ Use that X_{α} is an *F*-space to find $k : X_{\alpha} \to \mathbb{R}$ such that $f = k \cdot |f|$ on $\{\alpha\} \times X_{\alpha}$ Extend k to $\bigcup_{\beta < \gamma < \alpha} \{\gamma\} \times X_{\gamma}$ by $k(\gamma, x) = k(\alpha, Q_{\gamma, \alpha}(x))$