# An $F$-space 

Tá scéilín agam
K. P. Hart

Faculty EEMCS TU Delft

Cyberspace, 13 August 2021: 20:00-21:00 (UTC)

## The problem

Is there a zero-dimensional $F$-space that is not strongly zero-dimensional?
The terms:
Zero-dimensional the clopen sets form a base (plus $T_{1}$ )
Strongly zero-dimensional if two sets can be separated by a continuous function to $\mathbb{R}$ then they can be separated by a continuous function to $\{-1,1\}$. A bit more about that For normal spaces: disjoint closed sets can be separated by clopen sets. For Tychonoff spaces: the Čech-Stone compactification is zero-dimensional.

## The problem

$F$-space if $f: X \rightarrow \mathbb{R}$ is continuous then there is (another) continuous function $k: X \rightarrow \mathbb{R}$ such that $f=k \cdot|f|$.
That almost looks like strong zero-dimensionality (picture).
That picture was misleading; there are (compact) connected $F$-spaces (better picture).

## Implications

Zero-dimensional implies strongly zero-dimensional for
Compact spaces: just like "regular implies normal"
Lindelöf spaces: same reason (Lemma 1.5.15 in Engelking's book)
Hence in particular: separable metrizable spaces

## Examples

Dowker's example: a subspace $M$ of $\omega_{1} \times[0,1]$ that is normal and zero-dimensional, but not strongly zero-dimensional. (More about this example later.)

Prabir Roy's metrizable space that is zero-dimensional but not strongly so.
So separable is really necessary. (Really: John Kulesza has an example of weight $\aleph_{1}$.)
Jun Terasawa made maximal almost disjoint families whose $\psi$-spaces could have arbitrarily large covering dimension.
By having $n$-cubes, or even a Hilbert cube, in their Čech-Stone remainders.

## The question

Why only now?
The question for $F$-spaces must have been around long but we haven't found any explicit statement before five years ago on MathOverFlow.
With this comment: "If I remember correctly, I have at a conference heard Alan Dow refer to this problem as an open problem."

## Dowker's example $M$

As this was the second-order inspiration for our example we'll look at this one first. Take $\aleph_{1}$ many cosets of $\mathbb{Q}$ in $\mathbb{R}$, say $\left\langle Q_{\alpha}: \alpha \in \omega_{1}\right\rangle$. (But not $\mathbb{Q}$ itself.) We abbreviate $\bigcup_{\beta \geqslant \alpha} Q_{\beta}$ as $T_{\alpha}$.

Define

$$
M=\left\{\langle\alpha, x\rangle: \alpha \in \omega_{1} \text { and } x \notin T_{\alpha}\right\} \subseteq\left(\omega_{1}+1\right) \times[0,1]
$$

so the set of $x$ s with $\langle\alpha, x\rangle \in M$ grows with $\alpha$.

## Dowker's example $M$

## Properties of $M$ :

zero-dimensional for $\langle\alpha, x\rangle$ use vertical intervals with end points in $Q_{\alpha}$ normal Pressing Down Lemma
not strongly zero-dimensional $M$ is $C^{*}$-embedded in $M \cup\left(\left\{\omega_{1}\right\} \times[0,1]\right)$

## Dowker's example $M$ modified

We keep the notation but use quotients, not subspaces.
Let $\mathbb{A}$ be Alexandroff's split interval; that is,

$$
\mathbb{A}=\{\langle x, i\rangle \in[0,1] \times 2:(x=0 \rightarrow i=1) \wedge(x=1 \rightarrow i=0)\}
$$

ordered lexicographically (with order topology).
Take the following quotient of $\left(\omega_{1}+1\right) \times \mathbb{A}$ :

$$
N^{+}=\left\{\langle\alpha,\langle x, i\rangle\rangle: \text { if } x \notin T_{\alpha} \text { then } i=0\right\}
$$

meaning: identify $\langle\alpha,\langle x, 0\rangle\rangle$ and $\langle\alpha,\langle x, 1\rangle\rangle$ whenever $x \notin T_{\alpha}$. $T_{\omega_{1}}=\emptyset$, so at $\omega_{1}$ we have $[0,1]$.

## Dowker's example $M$ modified

So: more and more neighbours are identified as we go out to $\omega_{1}$.
At $\omega_{1}$ we identify all neighbours and get $[0,1]$.
We let $N=N^{+} \backslash\left(\left\{\omega_{1}\right\} \times[0,1]\right)$.
Properties of $N$ :
zero-dimensional for $\langle\alpha,\langle x, i\rangle\rangle$ use vertical intervals with end points in $Q_{\alpha}$ normal Pressing Down Lemma (or: the quotient map is closed)
not strongly zero-dimensional $N$ is $C^{*}$-embedded in $N^{+}$
locally compact clear; this was the reason for the modification

## Our example

〈Theme music from Jaws〉
We start with an ordered continuum $K$ with a dense subset $D$ that is enumerated as $\left\langle d_{\alpha}: \alpha \in \omega_{2}\right\rangle$ in such a way that every tail $T_{\alpha}=\left\{d_{\beta}: \beta \geqslant \alpha\right\}$ is dense in $K$.

If you like $\neg \mathrm{CH}$ do like Dowker: $K=[0,1]$ and take $\aleph_{2}$ many cosets of $\mathbb{Q}$ $\left(Q_{\alpha} \cap(0,1)=\left\{d_{\omega \alpha+n}: n \in \omega\right\}\right)$.

If you like ZFC better take $L=\left(\omega_{2}^{\star}+\omega_{2}\right)^{<\omega}$, ordered suitably lexicographically to get a densely ordered set of cardinality $\aleph_{2}$ in which every interval has cardinality $\aleph_{2}$ as well. Let $K$ be the Dedekind completion of $L$; then $L$ itself is the required dense set.

## Our example

We let

$$
K_{\alpha}=\left\{\langle x, i\rangle \in K \times 2: \text { if } x \notin T_{\alpha} \text { then } i=0\right\}
$$

The larger $\alpha$ the fewer points are split, and $K_{\omega_{2}}=K\left(\right.$ and $\left.T_{\omega_{2}}=\emptyset\right)$.
We take a quotient of $\left(\omega_{2}+1\right) \times K_{0}$, as above:

$$
N^{+}=\left\{\langle\alpha,\langle x, i\rangle\rangle: \text { if } x \notin T_{\alpha} \text { then } i=0\right\}
$$

Then $N=N^{+} \backslash\left(\left\{\omega_{2}\right\} \times K\right)$ is just like our modification of Dowker's $M$.
Except that it is not an $F$-space.

## Our example

〈Theme music from Jaws, but louder〉
First: $\omega_{2}+1$ has too many convergent sequences; we replace it by its $G_{\delta}$-modification $\left(\omega_{2}+1\right)_{\delta}$.

Second: ordered compacta have too many convergent sequences; we replace them by Čech-Stone remainders.

## Our example

〈Theme music from Jaws, still louder〉
Our starting point is $\left(\omega_{2}+1\right)_{\delta} \times \beta\left(\omega \times K_{0}\right)$.
We need some maps for administrative purposes:

- $q_{\beta, \alpha}: K_{\beta} \rightarrow K_{\alpha}$, where $\beta<\alpha$, is the natural map that identifies $\left\langle d_{\gamma}, 0\right\rangle$ and $\left\langle d_{\gamma}, 1\right\rangle$ when $\beta \leqslant \gamma<\alpha$;
- $q_{\alpha}$ abbreviates $q_{0, \alpha}$.


## Our example

〈Theme music from Jaws, really loud now $\rangle$
We have the maps $Q_{\alpha}: \beta\left(\omega \times K_{0}\right) \rightarrow \beta\left(\omega \times K_{\alpha}\right)$ induced by the maps $q_{\alpha}$.
These induce a map $Q$ from $\left(\omega_{2}+1\right)_{\delta} \times \beta\left(\omega \times K_{0}\right)$ onto

$$
Y=\bigcup_{\alpha \leqslant \omega_{2}}\{\alpha\} \times \beta\left(\omega \times K_{\alpha}\right)
$$

We give $Y$ the quotient topology that it gets from the product and $Q$. Fairly elementary: $Q$ is a closed map.

Alas, $Y$ is not an $F$-space, because it contains copies of the $K_{\alpha}$.

## Our example

$\langle$ Theme music from Jaws, crescendo〉
For every $\alpha$ we let $X_{\alpha}=\left(\omega \times K_{\alpha}\right)^{*}$ (Čech-Stone remainder of course).
Our space is

$$
X=\bigcup_{\alpha \in \omega_{2}}\{\alpha\} \times X_{\alpha}
$$

and we let $X^{+}=X \cup\left(\left\{\omega_{2}\right\} \times X_{\omega_{2}}\right)$, both as subspaces of the quotient of course.

## Our example

## Properties of $X$ :

zero-dimensional for $\langle\alpha, x\rangle$ use vertical intervals with end points in $T_{\alpha}$ to generate the necessary clopen sets
not strongly zero-dimensional $X$ is $C^{*}$-embedded in $X^{+}$and $X_{\omega_{2}}$ is one-dimensional $F$-space given $f: X^{+} \rightarrow \mathbb{R}$ there is for every $\alpha$ of uncountable cofinality a $\beta<\alpha$ such that $f \circ Q$ is constant on all sets of the form $(\beta, \alpha] \times\{x\}$ Use that $X_{\alpha}$ is an $F$-space to find $k: X_{\alpha} \rightarrow \mathbb{R}$ such that $f=k \cdot|f|$ on $\{\alpha\} \times X_{\alpha}$
Extend $k$ to $\bigcup_{\beta<\gamma<\alpha}\{\gamma\} \times X_{\gamma}$ by $k(\gamma, x)=k\left(\alpha, Q_{\gamma, \alpha}(x)\right)$

