Universal autohomeomorphisms of \mathbb{N}^* Tá scéilín agam

K. P. Hart

Faculty EEMCS TU Delft

Košice, 4 april 2022: 14:00 - 15:00

There are many types of universal objects.

In Topology we have two notions:

A member, X, of a class C is *universal* is every member of C can be embedded into X. A member, X, of a class C is *universal* is every member of C is a continuous image of X.

Embedding

Classical examples:

 $[0,1]^\kappa$ is universal for the class of all compact Hausdorff spaces (even all Tychonoff spaces) of weight at most κ

 $\{0,1\}^{\kappa}$ is universal for the class of all zero-dimensional compact Hausdorff spaces (even all zero-dimensional spaces) of weight at most κ

This seems to be more difficult:

The Cantor set is a universal compact metrizable space.

The space \mathbb{N}^* is a universal compact space of weight \mathfrak{c} , if the Continuum Hypothesis holds.

It is consistent that there is no universal compact space of weight $\mathfrak{c}.$

Universal autohomeomorphisms (embedding)

A pair (X, h), where X is a space and $h: X \to X$ is an autohomeomorphism, is universal for a class of similar pairs if for every such pair (Y, g) there is an embedding $e: Y \to X$ such that $h \circ e = e \circ g$.

A pair (X, h), where X is a space and $h: X \to X$ is an autohomeomorphism, is universal for a class of similar pairs if for every such pair (Y, g) there is a continuous surjection $s: X \to Y$ such that $g \circ s = s \circ h$.

We leave the second type of universality for another time.

A large source of such pairs is obtained as follows:

Take a space X such that X is homeomorphic to X^{ω} . Let $h: X^{\mathbb{Z}} \to X^{\mathbb{Z}}$ be the shift map: $h(x)_n = x_{n+1}$ (shift to the left). If $Y \subseteq X$ and $g: Y \to Y$ is an autohomeomorphism then define $e: Y \to X^{\mathbb{Z}}$ by $e(\mathbf{y}) = \langle g^n(\mathbf{y}) : n \in \mathbb{Z} \rangle.$ Now note: h(e(y)) = e(g(y)) for all y.

Also note that Y is re-embedded into X.

Universal autohomeomorphisms

So, we have universal autohomeomorphisms for all pairs (Y, g) where

- Y is compact Hausdorff (even Tychonoff) of weight at most κ
- > Y is zero-dimensional compact Hausdorff (even Tychonoff) of weight at most κ

An autohomeomorphism h of \mathbb{N}^* that is universal for all pairs (Y, g), where Y is a *closed* subspace of \mathbb{N}^* .

Is that possible? What would it look like?

Unfortunately \mathbb{N}^* is not homeomorphic to its countable power, so we need a new idea.

Remember: $\beta \mathbb{N}$ is the set of ultrafilters on \mathbb{N} , with the family

$$\{\overline{A}:A\subseteq\mathbb{N}\}$$

as a base, where $\overline{A} = \{u : A \in u\}$. The sets \overline{A} are closed and open: $\overline{\mathbb{N} \setminus A} = \beta \mathbb{N} \setminus \overline{A}$. Also: \overline{A} is the closure of A if $A \subseteq \mathbb{N}$. And $A^* = \overline{A} \setminus A$, and so $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$. If $\pi : \mathbb{N} \to \mathbb{N}$ is a bijection then it induces an autohomeomorphism of $\beta \mathbb{N}$, and also an autohomeomorphism of \mathbb{N}^* .

More generally: if A and B are co-finite and $\pi : A \to B$ is a bijection then it determines a homeomorphism $\pi^* : A^* \to B^*$. But $A^* = B^* = \mathbb{N}^*$, so π^* is in fact an autohomeomorphism of \mathbb{N}^* .

These are the easy ones; they are called the trivial autohomeomorphisms of \mathbb{N}^* .

Theorem 1

No trivial autohomeomorphism is universal.

An (easy) exercise: is π^* is a trivial autohomeomorphism then $\{u : \pi^*(u) = u\}$ is clopen (Hint: it is $\{n : \pi(n) = n\}^*$).

We find a closed subset Y of \mathbb{N}^* with an autohomeomorphism g with a single non-isolated fixed point.

Such a pair cannot be embedded into (\mathbb{N}^*, π^*) . Picture

It cannot be too easy

Let $X = \omega_1 + 1$ with the topology where each $\alpha \in \omega_1$ is isolated and $\{(\alpha, \omega_1] : \alpha < \omega_1\}$ is a local base at ω_1 . Let $Y = \beta X$ (the Čech-Stone compactification). Define $g : Y \to Y$ by $\triangleright g(\omega_1) = \omega_1$

- ► $g(2\alpha) = 2\alpha + 1$
- $g(2\alpha + 1) = 2\alpha$

and let Čech and Stone extend the map to the rest of Y.

Then ω_1 is the only fixed point of g.

And now we cheat:

Proposition [Eric van Douwen]

The space Y can be embedded into \mathbb{N}^* .

So, no trivial autohomeomorphism is universal.

And: in models where all autohomeomorphisms of \mathbb{N}^* are trivial (Shelah, PFA, MA+OCA, ...) there are no universal autohomeomorphisms of \mathbb{N}^* .

Let us assume the Continuum Hypothesis. (Let us look at the friendly head of $\mathbb{N}^{\ast}.)$

Many things go 'right' if we assume CH.

And we shall use a few of those 'correct' consequences to prove

Theorem 2

CH implies that there is a universal autohomeomorphism of \mathbb{N}^* .

How to prove Theorem 2?

In two big steps:

Build a space Z with a homeomorphism h that is universal for all pairs (Y, g) with Y closed in \mathbb{N}^* and g an autohomeomorphism of Y.

Embed Z into \mathbb{N}^* in such a way that there is an autohomeomorphism H of \mathbb{N}^* that extends (the copy of) h.

The first step

We let Aut denote the autohomeomorphism group of \mathbb{N}^* .

It carries a natural topology: the compact-open topology. This makes it a topological group.

Then the natural action $\sigma : \operatorname{Aut} \times \mathbb{N}^* \to \mathbb{N}^*$, defined by by $\sigma(f, u) = f(u)$ is continuous.

Then $h : Aut \times \mathbb{N}^* \to Aut \times \mathbb{N}^*$, defined by h(f, u) = (f, f(u)), is continuous (both coordinate maps are continuous) and bijective.

The inverse of *h* is given by $h^{-1}(f, u) = (f, f^{-1}(u))$ is continuous too. First coordinate: certainly. Second coordinate: $(f, u) \mapsto (f^{-1}, u) \mapsto \sigma(f^{-1}, u)$.

But . . .

The first step

 \ldots this is not quite our space Z yet.

It is universal for the collection of pairs that we specified.

Indeed, let (Y, g) be given.

Correct result 1: Y can be (re)embedded into \mathbb{N}^* so that it becomes a closed *P*-set. Correct result 2: g can be extended to an autohomeomorphism g^+ of \mathbb{N}^* (van Douwen and van Mill)

Look at the (re)embedded copy of Y in $\{g^+\} \times \mathbb{N}^*$: since h acts like g^+ on that 'vertical line' it extends that copy of g.

The second step

We change the topology on Aut a bit to get a space that can be embedded into \mathbb{N}^* .

We had the compact-open topology τ ; we take its G_{δ} -modification τ_{δ} (generated by the G_{δ} -sets).

Then (Aut, τ_{δ}) is also a topological group.

Our space Z is the product $\operatorname{Aut} \times \mathbb{N}^*$, where $\operatorname{Aut} \operatorname{carries} \tau_{\delta}$.

The map h is also an autohomeomorphism of Z and everything we established for the normal product holds for Z too.

The pair (Z, h) is universal for all pairs (Y, g), because the topology on the vertical lines does not change.

Also, Z is a strongly zero-dimensional F-space.

In fact, every open cover has a pairwise disjoint open refinement.

Here is where the topology τ_{δ} is used.

Negrepontis: the product of a *P*-space and an *F*-space is again an *F*-space.

An *F*-space is (can be) defined by: if $f : X \to \mathbb{R}$ is continuous then there is another continuous function $k : X \to \mathbb{R}$ such that $f = k \cdot |f|$.

Now: Z is a strongly zero-dimensional F-space of weight c.

It has a compactification K that is also a zero-dimensional F-space of weight \mathfrak{c} and such that h has an extension to an autohomeomorphism h^* of K.

Note K is not βZ , but the result of an application of the Löwenheim-Skolem theorem to the Boolean algebra of clopen sets.

We apply Correct result 1 again: K can be embedded into \mathbb{N}^* as a P-set.

And by Correct result 2 again: h^* has an extension to an autohomeomorphism of \mathbb{N}^* . Done! https://fa.ewi.tudelft.nl/~hart

K. P. Hart and Jan van Mill, *Universal autohomeomorphisms of* \mathbb{N}^* , to appear in Proceedings of the American Mathematical Society, Series B.

Koniec Rozprávky