Some realcompact spaces Tá scéilín agam

K. P. Hart

Faculty EEMCS TU Delft

Cyberspace, 17 March 2023: 17:10-17:30 (UTC)

Our question

Give examples of realcompact spaces with closed subsets that are C^* -embedded but not C-embedded.

Why?

We didn't know any.

Seriously: why?

Seriously: we didn't know any.

Remember: a space is normal iff every closed subspace is C^* -embedded iff every closed subspace is C-embedded

In *Rings of Continuous Functions* you will find just $\beta \mathbb{R} \setminus \mathbb{N}^*$.

Here $\mathbb N$ is a closed subspace that is $C^*\text{-embedded},$ the space itself is pseudocompact, so . . .

The example is due to Katětov (1951)

This amounts to cheating: just make sure there are no unbounded continuous functions on the ambient space.

We wanted *realcompact* examples, because these are complementary to pseudocompact spaces in the sense that:

 ${\rm compact} = {\rm pseudocompact} + {\rm realcompact}$

There are spaces that are neither pseudocompact nor realcompact, just watch our initial attempts . . .

A difficulty

An indication that finding examples is not completely trivial is

Theorem

Assume X is realcompact (but not compact) and A is a subset of X whose closure is not compact. Then A contains a copy of \mathbb{N} that is closed and C-embedded in X.

Proof.

Take $a \in \overline{A} \cap (\beta X \setminus X)$. By realcompactness there is a continuous $f : \beta X \to \mathbb{R}$ such that f(a) = 0 and f(x) > 0 whenever $x \in X$. Take a sequence $\langle x_n : n \in \omega \rangle$ in A such that $2^{-n} > f(x_n) > f(x_{n+1})$ for all n. Then the set $\{x_n : n \in \omega\}$ is closed, discrete, and C-embedded in X.

So, realcompact non-compact spaces are rife with closed C-embedded copies of \mathbb{N} .

Planks

Our examples will be variations on the Tychonoff and Dieudonné planks. Both have $(\omega_1 + 1) \times (\omega_0 + 1) \setminus \{\langle \omega_1, \omega_0 \rangle\}$ as their underlying sets.

The Tychonoff plank $\mathbb T$ has the subspace topology of the product of the two ordered spaces ω_1+1 and $\omega_0+1.$

The Dieudonné plank \mathbb{D} has the subspace topology of the product of the two ordered spaces $\omega_1 + 1$ and $\omega_0 + 1$, but where each ordinal in ω_1 is made isolated.

Both have a closed copy of \mathbb{N} , namely the right-hand side: $R = \{\omega_1\} \times \omega_0$.

And in both cases that copy is not even C^* -embedded.

Why is that?

Take the map $f : R \to [0,1]$ given by $f(\omega_1, n) = n \mod 2$.

If g were a continuous extension of f then there would be an ordinal α in ω_1 such that $g(\beta n) = f(\omega_1, n)$ for all n and all $\beta \ge \alpha$.

But then g would not be continuous at $\langle \beta, \omega_0 \rangle$ for all $\beta \ge \alpha$.

Another plank

A third variation: \mathbb{J} has the same underlying set but now $\omega_1 + 1$ is the one-point compactification of the discrete space ω_1 .

Again, no success:

- ▶ *R* is not *C**-embedded (same argument as before),
- ▶ J is not realcompact (no infinite subset of *R* is *C**-embedded)

• J is not pseudocompact either ({ $\langle n, n \rangle : n \in \omega$ } is clopen and discrete) Now what?

A variation

We blow up the top line: take the product $X = (\omega_1 + 1) \times \beta \omega_0$ and the plank $P = X \setminus (\{\omega_1\} \times \omega_0^*)$. Some success: R is now C^* -embedded. Given $f : R \to [0, 1]$ extend it in the obvious way to all of $(\omega_1 + 1) \times \omega$. And the extend it vertically using that we have $\beta \omega_0$ on each vertical line.

Some failure: no infinite subset of R is C-embedded, so this plank is not realcompact. It is also not pseudocompact because it maps (perfectly) onto \mathbb{J} .

So, at least we have improved upon Katětov's example by removing pseudocompactness.

Another variation

Time for drastic measures: $\Pi = \beta \omega_1 \times \beta \omega_0$ and $\mathbb{V} = \Pi \setminus (\omega_1^* \times \omega_0^*)$.

Now *R* is much thicker: $R = \omega_1^* \times \omega$.

But it is C^{*}-embedded: given $f : R \to [0, 1]$ extend it over every horizontal line $\beta \omega_1 \times \{n\}$ and then vertically again.

And, ..., R is not C-embedded: the obvious map $f : R \to \mathbb{R}$, given by f(u, n) = n for $u \in \omega_1^*$ cannot be extended.

For an extension g we would have an α such that $g(\beta, n) = n$ for all n and all $\beta \ge \alpha$.

And, ..., \mathbb{V} is realcompact: with a bit of work, considering a few cases, you can show that every zero-set ultrafilter with the countable intersection property converges.

But, every closed copy of $\mathbb N$ that is $C^*\text{-embedded}$ is also C-embedded. So, \ldots

Yet Another variation

..., time for one more variation.

Actually, we drop ω_1 and ω_0 and work with totally different sets, but the space will still be plank-like.

Horizontally we take $\mathfrak{C} = 2^{\omega} \cup \{\infty\}$, where each point of 2^{ω} is isolated and ∞ has co-countable neighbourhoods.

Vertically we start with the binary tree $D = 2^{<\omega}$ with the discrete topology and compactify it by laying the Cantor set 2^{ω} on top of it, so $cD = 2^{\leqslant \omega}$. A basic neighbourhood of $x \in 2^{\omega}$ is of the form

$$U(x,n) = \{s \in cD : x \upharpoonright n \subseteq s\}$$

We let $e: \beta D \to cD$ be the extension of the identity map. Bear with me, . . . We use *e* to partition D^* into closed sets: for $x \in 2^{\omega}$ we let $K_x = \{u \in D^* : e(u) = x\}$ We take the following subspace of the product $\mathfrak{C} \times \beta D$:

$$\mathbb{A} = (\mathfrak{C} imes D) \cup \bigcup_{x \in 2^{\omega}} \{x\} imes \mathcal{K}_x$$

 $R = \{\infty\} \times D$ is now a closed copy of \mathbb{N} .

R is *C*^{*}-embedded: just like before, the vertical lines are now subsets of βD so we can still extend vertically.

R is not *C*-embedded: define $f(\infty, s) = |s|$.

As before, given a potential extension g we have a co-countable subset B of 2^{ω} such that $g(x,s) = f(\infty,s)$ for all $x \in B$ and all $s \in D$. And $g \upharpoonright (\{x\} \times D)$ would not be extendible to the points of $\{x\} \times K_x$ (for $x \in B$).

Yet Another variation

The realcompactness of \mathbb{A} is now the trickiest bit.

The top line $T = \bigcup_{x \in 2^{\omega}} \{x\} \times K_x$ is a zero-set (use $f(x, s) = 2^{-|s|}$). The horizontal lines $\mathfrak{C} \times \{s\}$ are clopen, hence zero-sets.

A zero-set ultrafilter z with the countable intersection property picks out one of them.

If it picks $\mathfrak{C} \times \{s\}$ then it is elementary to show that *z* converges.

If it picks the top line T then every clopen subset C of the Cantor set determines a clopen subset of T, and hence a zero-set: $T_C = \bigcup_{x \in C} \{x\} \times K_x$.

So z picks T_C or its complement, for every C. But there are (only) countably many clopen sets in the Cantor set and all the choices that z makes intersect down to one of the compact sets $\{x\} \times K_x$, which then is in z. We find that z converges, because K_x is compact. Our right-hand side R should have many infinite C-embedded subsets. Indeed, we can point out a few: Every branch in R is C-embedded, as is every infinite antichain.

Light Reading

Alan Dow, Jan van Mill, Klaas Pieter Hart, Hans Vermeer Some Realcompact spaces, arXiv:2211.16545 [math.GN]