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Our question

Give examples of realcompact spaces with closed subsets that are C ∗-embedded but
not C -embedded.

Why?

We didn’t know any.

Seriously: why?

Seriously: we didn’t know any.

Remember: a space is normal
iff every closed subspace is C ∗-embedded
iff every closed subspace is C -embedded
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Our question

In Rings of Continuous Functions you will find just βR \ N∗.

Here N is a closed subspace that is C ∗-embedded, the space itself is pseudocompact,
so . . .

The example is due to Katětov (1951)

This amounts to cheating: just make sure there are no unbounded continuous
functions on the ambient space.
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https://eudml.org/doc/213255


Our question

We wanted realcompact examples, because these are complementary to
pseudocompact spaces in the sense that:

compact = pseudocompact+ realcompact

There are spaces that are neither pseudocompact nor realcompact, just watch our
initial attempts . . .
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A difficulty

An indication that finding examples is not completely trivial is

Theorem
Assume X is realcompact (but not compact) and A is a subset of X whose closure is
not compact. Then A contains a copy of N that is closed and C-embedded in X .

Proof.
Take a ∈ A ∩ (βX \ X ). By realcompactness there is a continuous f : βX → R such
that f (a) = 0 and f (x) > 0 whenever x ∈ X .
Take a sequence ⟨xn : n ∈ ω⟩ in A such that 2−n > f (xn) > f (xn+1) for all n.
Then the set {xn : n ∈ ω} is closed, discrete, and C -embedded in X .

So, realcompact non-compact spaces are rife with closed C -embedded copies of N.
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Planks

Our examples will be variations on the Tychonoff and Dieudonné planks.
Both have (ω1 + 1)× (ω0 + 1) \ {⟨ω1, ω0⟩} as their underlying sets.

The Tychonoff plank T has the subspace topology of the product of the two ordered
spaces ω1 + 1 and ω0 + 1.

The Dieudonné plank D has the subspace topology of the product of the two ordered
spaces ω1 + 1 and ω0 + 1, but where each ordinal in ω1 is made isolated.

Both have a closed copy of N, namely the right-hand side: R = {ω1} × ω0.

And in both cases that copy is not even C ∗-embedded.

Why is that?

8 / 18



Planks

Take the map f : R → [0, 1] given by f (ω1, n) = n mod 2.

If g were a continuous extension of f then there would be an ordinal α in ω1 such that
g(βn) = f (ω1, n) for all n and all β ⩾ α.

But then g would not be continuous at ⟨β, ω0⟩ for all β ⩾ α.
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Another plank

A third variation: J has the same underlying set but now ω1 + 1 is the one-point
compactification of the discrete space ω1.

Again, no success:

▶ R is not C ∗-embedded (same argument as before),

▶ J is not realcompact (no infinite subset of R is C ∗-embedded)

▶ J is not pseudocompact either (
{
⟨n, n⟩ : n ∈ ω

}
is clopen and discrete)

Now what?
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A variation

We blow up the top line:
take the product X = (ω1 + 1)× βω0 and the plank P = X \ ({ω1} × ω∗

0).

Some success: R is now C ∗-embedded.
Given f : R → [0, 1] extend it in the obvious way to all of (ω1 + 1)× ω.
And the extend it vertically using that we have βω0 on each vertical line.

Some failure: no infinite subset of R is C -embedded, so this plank is not realcompact.

It is also not pseudocompact because it maps (perfectly) onto J.

So, at least we have improved upon Katětov’s example by removing
pseudocompactness.
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Another variation

Time for drastic measures: Π = βω1 × βω0 and V = Π \ (ω∗
1 × ω∗

0).

Now R is much thicker: R = ω∗
1 × ω.

But it is C ∗-embedded: given f : R → [0, 1] extend it over every horizontal
line βω1 × {n} and then vertically again.

And, . . . , R is not C -embedded: the obvious map f : R → R, given by f (u, n) = n for
u ∈ ω∗

1 cannot be extended.
For an extension g we would have an α such that g(β, n) = n for all n and all β ⩾ α.

And, . . . , V is realcompact: with a bit of work, considering a few cases, you can show
that every zero-set ultrafilter with the countable intersection property converges.

But, every closed copy of N that is C ∗-embedded is also C -embedded.
So, . . .
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Yet Another variation

. . . , time for one more variation.
Actually, we drop ω1 and ω0 and work with totally different sets, but the space will still
be plank-like.

Horizontally we take C = 2ω ∪ {∞}, where each point of 2ω is isolated and ∞ has
co-countable neighbourhoods.

Vertically we start with the binary tree D = 2<ω with the discrete topology and
compactify it by laying the Cantor set 2ω on top of it, so cD = 2⩽ω.
A basic neighbourhood of x ∈ 2ω is of the form

U(x , n) = {s ∈ cD : x ↾ n ⊆ s}

We let e : βD → cD be the extension of the identity map.

Bear with me, . . .

13 / 18



Yet Another variation

We use e to partition D∗ into closed sets: for x ∈ 2ω we let Kx = {u ∈ D∗ : e(u) = x}

We take the following subspace of the product C× βD:

A = (C× D) ∪
⋃
x∈2ω

{x} × Kx

R = {∞} × D is now a closed copy of N.
R is C ∗-embedded: just like before, the vertical lines are now subsets of βD so we can
still extend vertically.
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Yet Another variation

R is not C -embedded: define f (∞, s) = |s|.
As before, given a potential extension g we have a co-countable subset B of 2ω such
that g(x , s) = f (∞, s) for all x ∈ B and all s ∈ D.
And g ↾

(
{x} × D

)
would not be extendible to the points of {x} × Kx (for x ∈ B).
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Yet Another variation

The realcompactness of A is now the trickiest bit.

The top line T =
⋃

x∈2ω{x} × Kx is a zero-set (use f (x , s) = 2−|s|).
The horizontal lines C× {s} are clopen, hence zero-sets.

A zero-set ultrafilter z with the countable intersection property picks out one of them.

If it picks C× {s} then it is elementary to show that z converges.

If it picks the top line T then every clopen subset C of the Cantor set determines a
clopen subset of T , and hence a zero-set: TC =

⋃
x∈C{x} × Kx .

So z picks TC or its complement, for every C . But there are (only) countably many
clopen sets in the Cantor set and all the choices that z makes intersect down to one of
the compact sets {x} × Kx , which then is in z .
We find that z converges, because Kx is compact.
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Yet Another variation

Our right-hand side R should have many infinite C -embedded subsets.

Indeed, we can point out a few:
Every branch in R is C -embedded, as is every infinite antichain.
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Light Reading

Alan Dow, Jan van Mill, Klaas Pieter Hart, Hans Vermeer
Some Realcompact spaces, arXiv:2211.16545 [math.GN]
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https://doi.org/10.48550/arXiv.2211.16545
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