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A question on mathoverflow

Mad Hatter asks
Consider the algebra B = P(ω)/fin (the quotient of the power set of natural numbers
modulo the ideal of finite sets). Is there an infinite strictly descending chain
{Ai | i ∈ I} of subalgebras of B, such that there is an embedding of Ai+1 into Ai , but
there is no embedding of Ai into Ai+1.

There were some comments about the possible difficulties one might encounter when
proving non-embeddability of Ai into Ai+1.

They involved the notion of invariants: things that should ‘measure’ the Ai and
indicate that Ai is ‘too large’ to fit inside Ai+1.
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A question on mathoverflow

Most of the invariants that we know are ordinal- or cardinal-valued and decreasing
sequences of these tend to be finite, so that makes it hard to create infinite decreasing
chains.

However, to paraphrase a famous saying . . .
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Invariants, we don’t need no stinking invariants

There is another way: Mass Murder.

An old idea by Sierpiński, affectionally known as

“Sierpiński’s technique of killing homeomorphisms”

allows us to line up potential bad maps and eliminate them.
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Turning the question upside-down

We use Stone Duality and construct (much more than) a sequence ⟨Kn : n ∈ ω⟩ of
compact zero-dimensional spaces such that

1. K0 is a continuous image of ω∗,

2. Kn+1 is a continuous image of Kn (all n), and

3. Kn is not a continuous image of Kn+1 (all n).

These spaces will all look the same superficially, with no discernible properties to
distinguish them, or even prevent continuous onto maps between them.

We simply eliminate all undesirable maps.
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The spaces

Consider Alexandroff’s double arrow A.

The underlying set of A is

D =
(
[0, 1]× {0, 1}

)
\
{
⟨0, 0⟩, ⟨0, 1⟩

}
,

ordered lexicographically and endowed with the order topology.
We drop the points ⟨0, 0⟩ and ⟨0, 1⟩ because they would be (the only) isolated points
of A.

As A is separable it is a continuous image of ω∗; this take care of item 1 in our list: we
can take K0 = A.
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The spaces

There are many continuous images of A.

For every subset X of (0, 1) take AX = {⟨x , i⟩ ∈ D : x ∈ X → i = 0}, ordered
lexicographically and given the order topology.

AX is obtained from A by identifying ⟨x , 0⟩ and ⟨x , 1⟩ whenever x ∈ X .
Thus we can write, e.g., A = A∅, and [0, 1] = A(0,1).

In all our examples the complement of X will be dense in (0, 1) and this will ensure
that AX is zero-dimensional.

If X ⊆ Y then there is a natural continuous surjection s : AX → AY , given by

▶ s(x , i) = ⟨x , i⟩ if x /∈ Y ;

▶ s(x , i) = ⟨x , 0⟩ if x ∈ Y \ X ; and

▶ s(x , 0) = ⟨x , 0⟩ if x ∈ X .
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The spaces

We find a family {SX : X ⊆ c} of subsets of (0, 1) and put KX = ASX for all X .

Whenever X ⊆ Y we shall have SX ⊆ SY and so KY will be a continuous image of KX .

All the work will go into ensuring that KX is not a continuous image of KY whenever
X ⊈ Y .

We get a family {KX : X ⊆ c} of continuous images of ω∗ that is order-isomorphic
to P(c) under the relation “maps continuously onto”.

By Stone Duality we get a family {BX : X ⊆ c} of subalgebras of P(ω)/fin that is
order-isomorphic to P(c) under the relation “embeds into”.
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The sets

Some preparations before we construct the sets SX .

Consider the set F of all maps f that satisfy:
dom f is a co-countable subset of [0, 1] and f : dom f → [0, 1] is continuous.

For every f ∈ F we let S(f ) = {x ∈ dom f : f (x) ̸= x} and E (f ) = dom f \ S(f ). We
choose a subset C (f ) of dom f such that the restriction f : C (f ) → f

[
S(f )

]
is a

bijection.

The family F has cardinality c.
The sets S(f ) and E (f ) are countable or of cardinality c.
The set f

[
S(f )

]
is countable or of cardinality c as well, hence so is C (f ).

S(f ) and C (f ) are Borel, and f
[
S(f )

]
is analytic;

so if they are uncountable they contain even a copy of the Cantor set.
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The sets

The members of F represent the potential continuous onto maps between our
compacta, so they will be lined up and dealt with . . .
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The sets

Proposition

There is a pairwise disjoint family {V } ∪ {Aα : α ∈ c} of Bernstein sets in (0, 1) with
the following properties.
All are disjoint from Q, and
for every f ∈ F : if f

[
S(f )

]
, and hence C (f ), has cardinality c then for all α the

intersections C (f ) ∩ Aα and f
[
C (f ) ∩ Aα

]
∩ V both have cardinality c.

Bernstein set: intersects every uncountable closed subset of [0, 1].

Once this is done we let, for every X ⊆ c:

SX = Q ∪
⋃
α∈X

Aα
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Construction

Enumerate the set of uncountable closed subsets of [0, 1] as ⟨Gβ : β ∈ c⟩,
and the members f of F for which f

[
S(f )

]
has cardinality c as ⟨fβ : β ∈ c⟩.

We assume each term of the sequences occurs c often.

Well-order c2 in order-type c, via ≺, and recursively choose points aα,β, bα,β, uα,β,
and vα,β, as follows.
At stage ⟨α, β⟩ collect Q and all previously chosen points aγ,δ, bγ,δ, uγ,δ, and vγ,δ,
with ⟨γ, δ⟩ ≺ ⟨α, β⟩ in a set P.
Then |P| < c.

Take aα,β in C (fβ) \ P and let bα,β = fβ(aα,β).

And then distinct uα,β and vα,β in Gβ \ (P ∪ {aα,β, bα,β}

In the end let Aα = {aα,β : β ∈ c} ∪ {uα,β : β ∈ c} for all α, and
V = {bα,β : ⟨α, β⟩ ∈ c2} ∪ {vα,β : ⟨α, β⟩ ∈ c2}
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Verification

For all X we have Q ⊆ SX and SX ∩ V = ∅.
The former is a technical convenience, the latter shows that KX is zero-dimensional.

We do have SX ⊆ SY whenever X ⊆ Y , so KX does indeed map onto KY in that case.

If X ⊈ Y then there is an α in X \ Y , and then Aα ⊆ SX \ SY .
We shall show: if f : KX → KY is continuous then f [KX ] is countable.
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Verification

To minimize on notational complexity we formulate this as follows.

Lemma
Let X and Y be subsets of (0, 1) such that Q ⊆ X and such that there is an α for
which Aα ⊆ X and Y ∩ (Aα ∪ V ) = ∅. Then every continuous map s : AX → AY has
a countable range.
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Verification

Proof of the Lemma:
Because Q ⊆ X the rationals are not split in AX , so we can talk unambiguously about
rational intervals in AX .

Let t : AY → [0, 1] be the natural map, then t ◦ s : AX → [0, 1] is continuous.
And: because the points of X are not split in AX we get a continuous map
g : X → [0, 1]: the restriction of t ◦ s.

Apply Lavrentieff’s theorem to obtain a Gδ-set U in [0, 1] that contains X and a
continuous extension f : U → [0, 1] of g .

As Aα is a Bernstein set the complement of U in [0, 1] is countable, and so f ∈ F .
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Verification

In order to show that the range of s is countable we look at the relationship between f
and s.

The continuous maps f and t ◦ s coincide on Aα and Aα is dense in [0, 1], so the maps
coincide on X .

If x ∈ X then f (x) = t(s(x)) and so s(x) = ⟨f (x), 0⟩ or s(x) = ⟨f (x), 1⟩

If x ∈ U \ X then t(s(x , 0)) = f (x) = t(s(x , 1)) by left- and right-continuity of f at x .
And so:

{
s(x , 0), s(x , 1)

}
⊆

{
⟨f (x), 0⟩, ⟨f (x), 1⟩

}
.

We see that the range of s is contained in the union of the countable set{
s(x , i) : x /∈ U, i ∈ {0, 1}

}
and f [U]× {0, 1}.

So, . . . , we should to show that f [U] is countable.
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Verification

Step 1: E (f ) is countable. Here we use that the points of Aα are split in AY .

We have Aα ∩ E (f ) =
{
x ∈ Aα : s(x) = ⟨x , 0⟩

}
∪
{
x ∈ Aα : s(x) = ⟨x , 1⟩

}
.

Look at the first set.
By continuity, if s(x) = ⟨x , 0⟩ then there is a rational interval (px , qx) such that
x ∈ (px , qx) and s

[
(px , qx)

]
⊆

[
⟨0, 1⟩, ⟨x , 0⟩

]
.

And, clearly, if x < y and s(x) = ⟨x , 0⟩ and s(y) = ⟨y , 0⟩ then y /∈ (px , qx).

The first set is countable.
And, by symmetric reasoning, so is the second set.

So Aα ∩ E (f ) is countable, and therefore E (f ) is countable.
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Verification

Step 2: f
[
S(f )

]
is countable. Here we use that the points of V are split in AY .

We look at Aα ∩ C (f ) and divide it into two sets:{
x : f (x) ∈ V and s(x) = ⟨f (x), 0⟩

}
, and

{
x : f (x) ∈ V and s(x) = ⟨f (x), 1⟩

}
.

As above we show that both sets are countable for x in the first set we take a rational
interval (px , qx) that contains x and that is mapped into

[
⟨0, 1⟩, ⟨f (x), 0⟩

]
In this case f (x) < f (y) implies that y /∈ (px , qx), and because f is injective on C (f )
the map x 7→ (px , qx) is injective.

We find that f
[
Aα ∩ C (f )

]
∩ V is countable.

By the conditions on the family {V } ∪ {Aβ : β ∈ c} this implies that f
[
S(f )

]
is

countable.
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Light reading

K. P. Hart,
Many subalgebras of P(ω)/fin, arXiv:2303.08491 [math.GN]
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