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Abstract. We investigate closed copies of N in powers of R with respect to

C∗- and C-embedding. We show that Rω1 contains closed copies of N that are
not C∗-embedded.

Introduction

In [5] we presented examples of realcompact spaces with closed subsets that are
C∗-embedded but not C-embedded.

One of these spaces, call it X, even contains a closed copy of N (the discrete
space of natural numbers) that is C∗-embedded but not C-embedded. It is well
known that the diagonal map fromX into RC(X) embedsX as a closed C-embedded
subspace. The closed copy of N in X then becomes a closed copy of N in RC(X)

that is C∗-embedded but not C-embedded.
An intermediate realcompact space, Y say, contains a closed copy of N that is

not C∗-embedded and, as above, this yields a closed copy of N in RC(Y ) that is not
C∗-embedded.

For both spaces the cardinality of the set of continuous functions is equal to c,
which yields the interesting result that one can find closed copies of N in Rc, that
are not C∗-embedded, and that are C∗-embedded but not C-embedded.

In the first version of [5] we posed two questions suggested by these results. We
repeat them here.

Question 1. What is the minimum cardinal κ such that Rκ contains a closed copy
of N that is C∗-embedded but not C-embedded?

Question 2. What is the minimum cardinal κ such that Rκ contains a closed copy
of N that is not C∗-embedded?

Given that Rω0 is metrizable and we know that in both cases we have ℵ0 < κ ⩽ c.
After we posted the first version of the present paper on arxiv.org Roman Pol

kindly drew our attention to three papers, [7], [12], and [10], containing results that
address the two questions above.

These are:

(1) The main result, Theorem 10, of [7] implies that there are many closed
copies of N in Rω1 that are not C∗-embedded.

(2) The paper [12] contains another example, Example 1.1, of a closed copy
of N in Rω1 that is not C∗-embedded, and an example of a closed copy of N
in Rc that is C∗-embedded but not C-embedded.
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(3) In [10] one finds a result, Theorem 3.1, that implies that under the as-
sumption of the inequality r > ℵ1 every C∗-embedded subset of Rω1 is
C-embedded.

The cardinal r is the reaping number : the minimum cardinality of a
family of subsets R of N that behaves like an ultrafilter but for the finite
intersection property: for every subset X of N there is a member R of R
such that R ⊆∗ X or R ∩X =∗ ∅; see [3].

Thus, Question 2 was answered before we posed it and the answer to Question 1
depends on one’s assumptions: the Continuum Hypothesis implies the minimum
is ℵ1, and it is also consistent that it is larger than ℵ1.

The result from [10] can be viewed as a local version of the main result of [2]: in
a model obtained by adding supercompact many Random reals to a model of CH
every C∗-embedded subspace of every space of character less than c is C-embedded.
Indeed, one can create a model of r > ℵ1 by adding ℵ2 or more Random reals to a
model of CH.

In retrospect our paper [5] should have contained references to [7,10,12] and we
regret not finding these references ourselves. Nevertheless the methods and results
of [5] and the present paper are sufficiently different from the earlier ones that we
feel they merit publication.

In Sections 2 and 3 we give new examples and obtain topological and combina-
torial translations of the statement “Rω1 contains a closed copy of N that is not
C∗-embedded” that suggest further interesting questions.

In Section 2 we present three constructions of closed copies of N that are not
C∗-embedded in Rω1 : one directly from an Aronszajn tree, one directly from an
Aronszajn continuum, and one as the path space of an Aronszajn tree. We decided
to give all three examples because they show how versatile these objects are.

In Section 3 we give the translations mentioned above and give a fourth example
that is of a somewhat different nature.

Section 4 deals with a class of topological spaces that feature in the transla-
tions, and in Section 5 we present models where CH fails but where the answer to
Question 1 is still ℵ1.

1. Preliminaries

By now the reader may have guessed that by “a closed copy of N” in some
space X we mean a closed subspace of X that is homeomorphic to the discrete
space N, in other words: a countably infinite closed and discrete subspace.

In general we say that a subspace Y of a space X is C-embedded if every con-
tinuous function f : Y → R has a continuous extension to all of X. If this holds
for all bounded continuous functions then we say that Y is C∗-embedded in X.

The way we shall show that a closed copy of N is not C∗-embedded in X is by
exhibiting disjoint subsets A and B of N that are not completely separated, which
means that whenever g : X → R is bounded and continuous the closures of g[A]
and g[B] intersect. This then implies that the characteristic function of A has no
continuous extension to X.

As mentioned in the introduction we shall uses Aronszajn trees and continua
in some of our constructions; Todorčević’s article [13] contains all the information
that we need.

As is common we use starred versions of the inclusion and equality signs to
indicate ‘mod finite’. So A ⊆∗ B means that A \ B is finite, A ⊂ B means that
A \B is finite but B \A is not, and A =∗ B means A ⊆∗ B and B ⊆∗ A.
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We use the well-known fact that if ⟨An : n ∈ ω⟩ is a sequence of infinite subsets
of N such that An+1 ⊆ ∗An for all n then there is an infinite subset A of N such
that A ⊆∗ for all n.

Any potentially unfamiliar topological notions will be defined when needed; def-
initions not given here can be found in Engelking’s book [6].

2. Closed copies of N that are not C∗-embedded

This section contains further examples that show that the answer to the Ques-
tion 2 is ℵ1. We give three examples, based on Aronszajn trees and lines, of closed
copies of N that are not C∗-embedded in Rω1 . This may seem like overdoing things
somewhat but we think that this presentation is more informative.

From our first two constructions we extract a few translations of “Rω1 contains
a closed copy of N that is not C∗-embedded” that allow us to construct a relatively
simple third example and an even simpler fourth one.

2.1. A closed copy of N that is not C∗-embedded, from an Aronszajn tree.
The first construction uses an Aronszajn tree to guide an embedding of N into Rω1 .

Using the fact about decreasing sequences of infinite subsets of N mentione above
we define a family {At : t ∈ <ω1ω} of infinite subsets of N such that

(1) if s ⊂ t then At ⊂∗ As, and
(2) for every t the family {At∗n : n ∈ ω} is a partition of As.

Next we take an Aronszajn subtree T of <ω1ω. Say an Aronszajn subtree of the
set of all finite-to-one members of <ω1ω, and such that {t∗n : n ∈ ω} ⊆ T whenever
t ∈ T .

For every non-zero α in ω1 we let ⟨t(α, n) : n ∈ ω⟩ enumerate the αth level Tα

of T in a one-to-one fashion. We abbreviate At(α,n) as A(α, n).
By construction each of the families {A(α, n) : n ∈ ω} is pairwise almost disjoint.

We can assume, after making finite modifications to the A(α, n), that every family
{A(α, n) : n ∈ ω} is in fact a partition of N.

We use the partitions to define a map k 7→ xk from N to Rω1 .

First we set xk(0) = 2−k for all k. This ensures that X = {xk : k ∈ N} is a
relatively discrete subspace of Rω1 .

Second, for every non-zero α in ω1 we define

x2k(α) = x2k+1(α) = m iff k ∈ A(α,m)

This will ensure that X is closed in Rω1 and that the sets {x2k : k ∈ N} and
{x2k+1 : k ∈ N} are not completely separated in Rω1 .

To see that X is closed let x ∈ clX and let u be an ultrafilter such that x =
u-limxk. We claim u is in fact a fixed ultrafilter and hence that x ∈ X.

Since u is a filter there is for every β most one n such that A(β, n) ∈ u. Let
B = {⟨β, n⟩ : A(β, n) ∈ u}. If u were free then A(β, n) ∩A(γ,m) would be infinite
whenever ⟨β, n⟩, ⟨γ,m⟩ ∈ B. By the construction of the family {At : t ∈ <ω1ω}
this would mean that {t(β, n) : ⟨β, n⟩ ∈ B} is linearly ordered in T , and hence
countable.

Take α such that Tα ∩ {t(β, n) : ⟨β, n⟩ ∈ B} = ∅, and let m =
⌈
x(α)

⌉
. Then

U = N\
⋃

i⩽m A(α, i) belongs to u, and x2k(α) = x2k+1(α) ⩾ x(α)+1 for all k ∈ U .

This shows that x(α) ̸= u-limxk(α), which contradicts the assumption that x =
u-limxk.

To see that {x2k : k ∈ N} and {x2k+1 : k ∈ N} are not completely separated
in Rω1 let g : Rω1 → [0, 1] be continuous. It is well-known, see [6, Problem 2.7.12],
that there are δ < ω1 and a continuous function h : Rδ → [0, 1] such that g = h◦πδ.



4 A. DOW, K. P. HART, J. VAN MILL, AND J. VERMEER

Consider A(δ, 0). By construction we know that for every non-zero α < δ there
is a single nα such A(δ, 0) ⊂∗ A(α, nα). Let x ∈ Rδ be given by x(0) = 0 and
x(α) = nα, then the subsequences ⟨x2k : k ∈ A(δ, 0)⟩ and ⟨x2k+1 : k ∈ A(δ, 0)⟩ of
⟨xk : k ∈ N⟩ both converge to x and so h(x) is in the closure of both {g(x2k) : k ∈ N}
and {g(x2k+1) : k ∈ N}.

2.2. Another closed copy of N that is not C∗-embedded, from an Aron-
szajn line. Let L be an Aronszajn continuum: a first-countable linearly ordered
continuum of weight ℵ1 with the property that the closure of every countable set is
second-countable, see [13, Section 5]. We can also assume, without loss of generality,
that L has no non-trivial separable intervals.

Let ⟨xα : α ∈ ω1⟩ enumerate a dense subset of L, where we assume that
x0 = minL and x1 = maxL. Using the first-countability of L we find that
L =

⋃
α<ω1

cl{xβ : β ⩽ α}, that is, L is the union of an increasing sequence of
second-countable compact subsets. Upon thinning out the sequence we obtain a
strictly increasing sequence ⟨Kα : α ∈ ω1⟩ of second-countable compact subsets
whose union is equal to L. The assumption on the intervals of L implies that
each Kα is nowhere dense.

We claim that every Kα is a Gδ-set of L. By the first-countability of L this is
clear if α is finite, so we assume below that α is infinite, and hence that minL and
maxL belong to Kα.

Since Kα is second-countable we can find a countable family I of open intervals
in L such that {I ∩Kα : I ∈ I} is a base for the topology of Kα.

Every convex component C of L \Kα is of the form (aC , bC), with aC , bC ∈ Kα.
If C and D are two such components then bC < aD or bD < aC . For each C take
IC ∈ I such that IC ∩Kα ⊆ [bC ,maxL]. Then aC /∈ IC and so bD /∈ IC whenever
bD < aC . It follows that IC ̸= ID whenever C ̸= D. This shows that there are at
most countably many convex components in the complement of Kα.

Enumerate these components as ⟨Cn : n ∈ ω⟩ and choose for every n ∈ ω
sequences ⟨a(n, k) : k ∈ ω⟩ and ⟨b(n, k) : k ∈ ω⟩ in Cn such that a(n, k) ↓ aCn

and
b(n, k) ↑ bCn .

Then Cn =
⋃

k∈ω[a(n, k), b(n, k)] for all n. Define Fk =
⋃

n⩽k[a(n, k), b(n, k)] for

all k. Then ⟨Fk : k ∈ ω⟩ is a sequence of closed sets and its union is equal to the
complement of Kα.

Since L has weight ℵ1 there is a compactification γN of N such that γN \ N is
(homeomorphic to) L, see [6, Problem 3.12.18 (c)]. Take the quotient of γN×{0, 1}
obtained by identifying ⟨x, 0⟩ and ⟨x, 1⟩ for all x ∈ L.

The result is a new compactification δN of N with remainder equal to L and in
which N is the union of two subsets A and B such that L = clA ∩ clB.

We map δN into [0, 1]ω1 in such a way that the image of N will be a closed subset
of (0, 1)ω1 that is not C∗-embedded.

For every α ⩾ 1 we let fα : δN → [0, 1] be continuous such that Kα = f←α (0)
and fα[N] ⊆ (0, 1). We let f0 : δN → [0, 1] be the continuous map determined by
f0(k) =

1
2 + 2−k−2; it maps L to { 1

2} and N into (12 , 1).
The diagonal map F of ⟨fα : α ∈ ω1⟩maps δN to [0, 1]ω1 and maps N into (0, 1)ω1 .
The first coordinate f0 ensures that F [N] is relatively discrete in (0, 1)ω1 ; it

remains to show that it is closed and not C∗-embedded.

To see that F [N] is closed in (0, 1)ω1 observe that for every x ∈ L there is
an α such that x ∈ Kα; but then fβ(x) = 0 for β ⩾ α. It follows that F [N] =
F [δN] ∩ (0, 1)ω1 .
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To see that F [N] is not C∗-embedded in (0, 1)ω1 let g : (0, 1)ω1 → [0, 1] be
continuous. We show that the closures of g[A] and g[B] intersect.

As above there is an α such that g factors through the first α coordinates, that
is, there is a continuous map h : (0, 1)α → [0, 1] such that g = h ◦ πα. Take
x ∈ L\Kα. Then x ∈ clA∩ clB, hence πα(x) ∈ cl(πα[A])∩ cl(πα[B]). But because
x /∈ Kβ for all β ⩽ α we find that πα(x) ∈ (0, 1)α and hence we conclude that
h(πα(x)) ∈ cl(g[A]) ∩ cl(g[B]).

2.3. A characterization. From the foregoing example we extract a characteriza-
tion of there being a closed copy of N in Rω1 that is not C∗-embedded.

Theorem 2.1. The following three statements are equivalent:

(1) There is closed copy of N in Rω1 that is not C∗-embedded.
(2) There is closed copy of N in Rω1 that is not C-embedded.
(3) There is a compact space X with a cover consisting of ℵ1 many zero-sets

that has no countable subcover.

Proof. That (1) implies (2) is clear.
To prove (2) implies (3) we take a countable closed and discrete subset N

of (0, 1)ω1 that is not C-embedded. Let K = clN \ N , where we take the clo-
sure in [0, 1]ω1 . For every α ∈ ω1 and i ∈ {0, 1} we let A(α, i) = {x ∈ K : xα = i}.
Then {A(α, i) : ⟨α, i⟩ ∈ ω1 × 2} is a cover of K by ℵ1 many Gδ-sets. We show that
there is no α ∈ ω1 such that {A(β, i) : ⟨β, i⟩ ∈ α× 2} covers K.

Let α ∈ ω1; we can assume that the projection πα : [0, 1]ω1 → [0, 1]α is one-to-one
on N . If {A(β, i) : ⟨β, i⟩ ∈ α × 2} covers K then for every x ∈ K there is a β ∈ α
such that xβ ∈ {0, 1}, and hence πα(x) /∈ (0, 1)α. We see that πα[K] is disjoint
from (0, 1)α and hence that πα[N ] is closed in (0, 1)α and hence also C-embedded
because (0, 1)α is metrizable. But then N would be C-embedded in (0, 1)ω1 .

To prove that (3) implies (1) we proceed as in Section 2.2. Let X be a space as
in (3) and let {Aα : α ∈ ω1} be the cover by zero-sets without a countable subcover.
We may assume that X has weight ℵ1, for example, by choosing a sequence ⟨fα :
α ∈ ω1⟩ of continuous functions from X to [0, 1] such that Aα = f←α (0) for all α.
The image K of X under the diagonal map of the sequence has the same property
as X itself, where Bα = {x ∈ K : xα = 0} defines the family of zero-sets.

The construction in Section 2.2 now yields a closed copy of N in (0, 1)ω1 that is
not C∗-embedded. □

Remark 2.2. Of course 22 = 4 is also an equivalent of statement (1), as both are
true, but this theorem should be understood as a translation: to construct the
desired embedding it is necessary and sufficient to construct a particular type of
compact topological space.

Remark 2.3. It is interesting to see that the formally weaker statement (2) implies
statement (1); what is hidden in the proof is that from the copy that is not C-
embedded one constructs a copy that is not C∗-embedded by taking its closure
in [0, 1]ω1 , doubling the resulting compactification, then glueing the remainders
onto each other and find a suitable embedding of the resulting space.

2.4. Yet another closed copy of N that is not C∗-embedded, from an
Aronszajn tree. To see an application of Theorem 2.1 we create yet another
closed copy of N in Rω1 that is not C∗-embedded, by exhibiting a space that satisfies
the properties in (3) in the theorem.

We let T be an Aronszajn tree and we take its path space σT , where a path
is a linearly ordered subset P that is also an initial segment: if t ∈ P and s ⩽ t
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then s ∈ P . We view σT , via characteristic functions, as a subspace of the Cantor
cube {0, 1}T . For more on this construction see [14].

The condition that the paths be linearly ordered ensures that σT is closed and
hence compact. The weight of σT is at most that of {0, 1}T , that is ℵ1.

For α ∈ ω1 we let Kα be the set of paths that are of length less than α. To see
that Kα is closed note that p ∈ Kα iff p ∩ Tα = ∅. That is Kα = σT \

⋃
t∈Tα

Ot,

where Ot = {p : t ∈ p}. The sets Ot are clopen, so the union
⋃

t∈Tα
Ot is an open

Fσ-set.
Because T is uncountable no countable subfamily of {Kα : α ∈ ω1} covers σT .
Note that, as every path is countable, the space σT is actually Corson-compact.

3. The connection with Aronszajn trees and lines

Each of the three constructions in the previous section uses an Aronszajn tree
or line as input. The following theorem, which adds three more statements to the
list in Theorem 2.1, makes precise how these structures enter the constructions.

Theorem 3.1. The following statements are equivalent.

(1) There is closed copy of N in Rω1 that is not C∗-embedded.
(2) There is closed copy of N in Rω1 that is not C-embedded.
(3) There is a compact space X with a cover consisting of ℵ1 many zero-sets

that has no countable subcover.
(4) There is a compact space X of weight ℵ1 with a cover consisting of ℵ1 many

zero-sets that has no countable subcover.
(5) The space N∗ has a cover by ℵ1 many zero-sets that has no countable sub-

cover.
(6) There is an ω1 × ω-matrix ⟨A(α, n) : ⟨α, n⟩ ∈ ω1 × ω⟩ of infinite subsets

of N such that
(a) for every countable subset C of ω1 there is a function f : C → ω such

that {A(α, f(α)) : α ∈ F} has the strong finite intersection property,
and

(b) there is no function f : ω1 → ω such that {A(α, f(α)) : α ∈ ω1} has
the strong finite intersection property.

Proof. Theorem 2.1 established the equivalence of (1), (2), and (3). In the proof
that (3) implies (1) we proved implicitly that (3) implies (4) and (4) implies (1).

Clearly (5) implies (3).
To prove that (4) implies (5) we take a continuous map f from N∗ onto X and

take the preimages of the members of the given cover. This yields the desired cover
of N∗.

It remains to show that (5) and (6) are equivalent. This follows from the strong
zero-dimensionality of N∗: if Z is a zero-set in N∗ then one can cover N∗ \ Z by a
countable pairwise disjoint family of clopen sets. This family can be expressed as
{A∗n : n ∈ ω}, where each An is an infinite subset of N.

Conversely if {An : n ∈ ω} is a family of infinite subsets of N then N∗ \
⋃

n∈ω A∗n
is a zero-set.

Thus a family {Zα : α ∈ ω1} of zero-sets of N∗ can be represented by a matrix
⟨A(α, n) : ⟨α, n⟩ ∈ ω1×ω⟩ of infinite subsets of N such that Zα = N∗\

⋃
n∈ω A(α, n)∗.

Then condition (a) expresses that no countable subfamily covers N∗, and condi-
tion (b) expresses that the family does cover N∗. □

The matrix ⟨A(α, n) : ⟨α, n⟩ ∈ ω1 × ω⟩ of sets from Section 2.1, that resulted
from enumerating the levels of the Aronszajn tree as ⟨t(α, n) : n ∈ ω⟩, satisfies the
conditions in item (6) of Theorem 3.1.
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It would seem natural to call such a matrix an Aronszajn matrix and a compact
space with a cover of cardinality ℵ1 by closed Gδ-sets without a countable subcover
an Aronszajn compactum. This usage would conflict with that of Hart and Kunen
in [8]; and, more importantly, it would not be quite correct, as we show next.

3.1. A matrix and space that are not derived from an Aronszajn tree.
The three examples constructed in Section 2 all have in common that they have an
increasing cover of length ω1 by closed Gδ-sets.

Here we construct a compact space of weight ℵ1 with an ℵ1-sized cover by closed
Gδ-sets that has no countable subcover, and that is definitely not increasing. The
space is a variation of Example 7 in [1].

To begin we take an injective map f : ω1 → R with the property that for every α
the image of the interval Iα =

[
ω · α, ω · (α + 1)

)
under f is dense in R. This is

easily arranged, for example by taking ℵ1 many cosets of the subgroup of rationals
and mapping each interval Iα onto one of these cosets.

We let X be the set of all subsets of ω1 on which f is monotonically increasing;
we identify X, via characteristic functions, with a subset of 2ω1 and give it the
subspace topology.

The complement of X is open: if x /∈ X then there are two ordinals α and β
such that xα = xβ = 1, α ∈ β, and f(β) < f(α). Then {y : yα = yβ = 1} is an
open set disjoint from X. It follows that X is compact.

As subsets of R that are well-ordered by the normal order are countable the
space X is Corson compact.

It remains to exhibit a cover of X by closed Gδ-sets that has no countable
subcover.

To this end we let Gα = {x ∈ X : (∀β ∈ Iα)(xβ = 0)}. This is a closed Gδ-set; it
is the intersection of countably many basic clopen sets: Gα =

⋂
β∈Iα{x : xβ = 0}.

To see that {Gα : α ∈ ω1} is a cover of X, let x ∈ X. Then, because S = {β :
xβ = 1} is countable, there is an α such that S ⊂ α; then S∩Iα = ∅ and so x ∈ Gα.

To see that no countable subfamily covers X we let δ ∈ ω1. We take a subset A
of R that is ordered in order-type δ + 2 by the normal order of R and we list A
as ⟨aα : α < δ + 2⟩ in increasing order. Next we take a sequence ⟨γα : α < δ + 2⟩
of ordinals such that γα ∈ Iα and aα < f(γα) < aα+1 for all α. Then the set
{γα : α < δ + 2} determines a point in X that is not in

⋃
α∈δ Gα.

The same argument enables one to show that the sets Gα are quite indepen-
dent: given two disjoint countable sets of ordinals A and B one can find points in⋂

α∈A Gα \
⋃

β∈B Gβ .
Via a map from N∗ onto X we can then create a matrix that is quite different

from the ones derived from Aronszajn trees.

4. Pseudo-Aronszajn compacta

Let us, for the nonce, call a compact space a pseudo-Aronszajn compactum if it
has a cover of cardinality ℵ1 by closed Gδ-sets that has no countable subcover. We
let A denote the class of these compacta.

It is readily seen that A is closed under taking (compact) preimages: simply pull
back the cover.

We have established that every Aronszajn continuum is in A, and hence that a
Souslin continuum is a ccc compactum in A.

The ordinal space ω1 +1 does not belong to A as every Gδ-set that contains the
point ω1 is co-countable.

Somewhat surprisingly, uncountable compact metrizable spaces may or may not
all be pseudo-Aronszajn compacta. They all are under CH and they all are not
under MA+ ¬CH.
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Proposition 4.1 (CH). If X is compact and admits a continuous map f : X → R
such that f [X] is uncountable, then X ∈ A.

Proof. The image f [X] is in A, as witnessed by the family of singleton subsets. □

Proposition 4.2 (MA+¬CH). If X is compact, uncountable and hereditarily Lin-
delöf, then X ̸∈ A.

Proof. Let Z be a witness of the fact that the uncountable compact hereditarily
space X is in A. We will derive a contradiction.

Let X0 = X and U0 =
⋃

Z∈Z intX0 Z. There is a countable subfamily Z0 of Z
such that U0 =

⋃
Z∈Z0

intX0 Z.
Assume that for some α < ω1, we defined closed sets Xβ , open sets Uβ , and

subfamilies Zβ of Z, for all β < α.
Let V =

⋃
β<α Uβ , Xα = (

⋂
β<α Xβ) \ V , and S =

⋃
β<α Zβ .

Inside Xα let W =
⋃

Z∈Z intXα
(Z ∩Xα). Then Uα = V ∪W is open in X, and

there is a countable subcollection T of Z such that W =
⋃

Z∈T intXα
(Z ∩Xα). We

let Zα = S ∪ T .
There is a first α ∈ ω1 such that Uα = Uα+1. If Y = X \Uα is countable, then we

are clearly done. If Y is uncountable, then for every Z ∈ Z, the intersection Z ∩ Y
is nowhere dense in Y . But this contradicts MA + ¬CH, for Y is an uncountable
compact ccc space with a cover by fewer than c many nowhere dense sets. □

One may wonder whether MA+¬CH prevents more compact spaces from being
pseudo-Aronszajn. We have seen that a Souslin line is a pseudo-Aronszajn com-
pactum and we also know that MA+¬CH implies there are no Souslin lines. Thus
we may conjecture that it implies that there are no pseudo-Aronszajn compacta
that are ccc.

However, as there are pseudo-Aronszajn compacta of weight ℵ1 one can construct
a compactification γN of N with a pseudo-Aronszajn remainder. That compactifi-
cation is itself also pseudo-Aronszajn: simply add the isolated points to the cover
of the remainder. Thus we see that A contains separable spaces.

We can strengthen the ccc assumption by making it hereditary; it is well known
that having the hereditary ccc is equivalent to every relatively discrete subspace
being countable, see [6, Problem 2.7.9(b)] for example. Thus, the hereditary ccc is
also a weakening of the hereditary Lindelöf property and a positive answer to the
following question would yield a strengthening of Proposition 4.2.

Question 3. Does MA + ¬CH imply that uncountable compact hereditarily ccc
spaces are not pseudo-Aronszajn?

We remark in passing that it is also unknown whether compact hereditarily ccc
spaces are continuous images of N∗, see [9, Question 44].

5. ¬CH and a closed copy of N that is C∗-embedded but not
C-embedded

In section 2 we used an Aronszajn tree to guide an embedding of N into Rω1

so as to obtain a closed copy of N that is not C∗-embedded. In this section we
use an Aronszajn tree again, this time to create closed copies of N in Rω1 that are
C∗-embedded but not C-embedded, in models where CH fails. Thus we see that it
is consistent with ¬CH that the answer to Question 1 be ℵ1.

The embedding will be much like the one from an arbitrary Aronszajn tree but
with a few changes. We shall show that the following assumption suffices to create
a closed copy of N in Rω1 that is C∗-embedded but not C-embedded.
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Assumption. There are an Aronszajn tree S and a family {As : s ∈ S} of infinite
subsets of N such that

• if s < t then At ⊂∗ As, and
• if Y ⊆ N then there is an ordinal α in ω1 such that for every s ∈ Sα either
As ⊆∗ Y or As ∩ Y =∗ ∅.

Here Sα denotes the αth level of S. We also assume that every level Sα, except S0,
is infinite and that every node in S has infinitely many direct successors.

In addition we make finite modifications to each As so that {As : s ∈ Sα} is a
partition of N.

5.1. The construction. We shall embed N into the following product:

Π = C ×
∏

1⩽α<ω1

Sα

where C is the subspace {0}∪ {2−n : n ∈ N} of R and each other factor Sα has the
discrete topology. This product is homeomorphic to the product C × Nω1 , which
in turn can be embedded as a C-embedded subspace into Rω1 .

Now we are ready to define the embedding.
To begin we set xk(0) = 2−k for all k; this ensures that the image will be

relatively discrete.
If α ∈ [1, ω1) then we set xk(α) = s iff k ∈ As (and s ∈ Sα of course).
This defines our copy N = {xk : k ∈ N} of N in Π.

N is closed in Π. Let v ∈ Π. Then ⟨vα : 1 ⩽ α < ω1⟩ is a sequence in S with
vα ∈ Sα for all α.

As S is an Aronszajn there are α and β with α < β and such that vα and vβ are
incomparable. Let w be the predecessor of vβ in Sα. Then Aw ∩ Avα = ∅ and so,
because Avβ ⊂∗ Aw the intersection Avβ ∩Avα is finite.

Let U be the basic neighbourhood {x ∈ Π : xα = vα and xβ = vβ} of v. Then
xk ∈ U iff k ∈ Avβ ∩Avα , hence U ∩N is finite.

We see that N is a locally finite and relatively discrete subset of Π, hence N is
closed and discrete.

N is C∗-embedded in Π. Let Y ⊆ N; we show that the sets {xk : k ∈ Y } and
{xk : k /∈ Y } are completely separated in Π.

Let α be such that As ⊆∗ Y or As ⊆∗ N \ Y for all s ∈ Sα and divide Sα into
two sets: I = {s ∈ Sα : As ⊆∗ Y } and J = {s ∈ Sα : As ∩ Y =∗ ∅}.

In this way we create four subsets of N:
(1) Y1 =

⋃
{As ∩ Y : s ∈ I},

(2) Y2 =
⋃
{As ∩ Y : s ∈ J},

(3) Z1 =
⋃
{As \ Y : s ∈ J}, and

(4) Z2 =
⋃
{As \ Y : s ∈ I}.

To begin we observe that Y2 ∪ Z2 intersects every As in a finite set. Because
{As : s ∈ Sα} is a partition of N this implies, as in the proof that N is closed,
that D = {xk ↾ (α + 1) : k ∈ Y2 ∪ Z2} is a closed and discrete subset of the
subproduct Πα = C×

∏
1⩽β⩽α Sβ . This product is separable and metrizable, hence

D is C-embedded in this subproduct, this implies that in particular, {xk ↾ (α+1) :
k ∈ Y2} and {xk ↾ (α+ 1) : k ∈ Z2} are completely separated in Πα.

Furthermore, because N is relatively discrete in the subproduct the set D is
disjoint from the closure of {xk ↾ (α+ 1) : k ∈ Y1 ∪ Z1}.

Finally the αth coordinates of the xk ensure that {xk(α) : k ∈ Y1} and {xk(α) :
k ∈ Z1} are disjoint. And because Sα has the discrete topology this shows that
{xk ↾ (α+ 1) : k ∈ Y1} and {xk ↾ (α+ 1) : k ∈ Z1} are completely separated in Πα.
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We conclude that {xk ↾ (α+1) : k ∈ Y } and {xk ↾ (α+1) : k /∈ Y } are completely
separated in Πα.

N is not C-embedded in Π. We show that the function f : N → R that maps xk

to k has no continuous extension to Π.
Assume g : Π → R is continuous and such that g(xk) = k for all k. As before

we can factor g through a partial product: there are a δ and a continuous function
h : C ×

∏
1⩽α<δ Sα such that g = h ◦ πδ.

Let s ∈ Sδ and let sα denote its predecessor in Sα, for α ∈ [1, δ). Take such an α,
then by construction As ⊆∗ Asα and so xk(α) = sα for all but finitely many k ∈ As.

Because As is infinite this implies that the point v, with v(0) = 0 and v(α) = sα
for α ∈ [1, δ), is an accumulation point of {πδ(xk) : k ∈ As} and hence that h(v) > k
for all k, a contradiction.

5.2. A model. To finish we show that our assumption is actually consistent with
the negation of CH. Chapters VII and VIII of [11] provide all the forcing background
that we need.

We let S be an Aronszajn tree as constructed in [11, Theorem II.5.9]. This tree
is a subtree of the subtree T of ω<ω1 that consists of all finite-to-one sequences
of natural numbers and it has the property that for every s ∈ S the set of direct
successors is {s ∗ n : n ∈ ω}. This tree has the advantage that if a partial order
preserves ω1 then it will not add an ω1-branch to it, as such a branch would give a
finite-to-one map from ω1 to ω.

Next we work Exercise VIII (A10) in [11], that is, we perform an ω1 long fi-
nite support iteration of σ-centered partial orders to create an ultrafilter on N of
character ℵ1.

More explicitly: we form a sequence ⟨Mα : α ⩽ ω1⟩ of models, together with
sequences ⟨uα : α ∈ ω1⟩ and ⟨Uα : α ∈ ω1⟩. Together these satisfy

(1) uα is an ultrafilter on N in Mα,
(2) Mα+1 is obtained by forcing over Mα with the partial order E(uα) descibed

below, which produces a subset Uα of N such that Uα ⊆∗ X for all X ∈ uα,
and

(3) uα+1 extends uα ∪ {Uα}.
For a free ultrafilter u on N we define the partial order

E(u) = {⟨s, U⟩ : s ∈ [N]<ω, U ∈ u}

ordered by ⟨s, U⟩ ⩽ ⟨t, V ⟩ iff
• t ⊆ s,
• U ⊆ V , and
• s \ t ⊆ V .

If G is a generic filter on E(u) then E =
⋃
{s : (∃U ∈ u)(⟨s, U⟩ ∈ G)} is an infinite

subset of ω such that E ⊆∗ U for all U ∈ u.

The assumption. The iteration yields a ccc partial order with a dense subset of car-
dinality c. Therefore it preserves all cardinal arithmetic from the ground model M0.
Thus Mω1

can be made to satisfy any consistent cardinal arithmetic, in particular
2ℵ0 can be anything ot ought to be.

We define a family {As : s ∈ S} of infinite subsets as in our assumption. We
start by setting A∅ = N.

For the successor steps we fix a definable bijection f : N2 → N, say f(m,n) =
1
2 (m+ n)(m+ n+ 1) +m (compare [4, p. 257]).

Going from α to α + 1 we assume that {As : s ∈ Sα} is in Mα and build
{At : t ∈ Sα+1} in Mα+1. We take for every s ∈ Sα the counting function cs :
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N → As; these functions belong to Mα. For every s ∈ Sα and n ∈ N we define
As∗n = fs

[
f [{n} × Uα]

]
. In words: we use fs ◦ f to create a partition of As in Mα

and then copy Uα to each element of that partition by maps in Mα.
In this way we ensure that each As∗n has the property that Uα has: for every

subset Y of N that is in Mα we have As∗n ⊆∗ Y or As∗n ∩ Y =∗ ∅. The resulting
family {At : t ∈ Sα+1} is defined from Uα and members of Mα, hence it is in Mα+1.

In case α ∈ ω1 is a limit the partial family {As : s ∈
⋃

β∈α Sβ} belongs to Mα.

So in Mα we can find a family {At : t ∈ Sα} of infinite subsets of N such that
At ⊆∗ As whenever s < t.

To see that the resulting family has the second property in our assumption
we let Y , in Mω1 , be a subset of N. By well-known properties of finite-support
iterations of ccc partial orders there is an α ∈ ω1 such that Y ∈ Mα. But then for
all s ∈ Sα+1 we have As ⊆ Y or As ∩ Y =∗ ∅.
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