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Abstract. In answer to a question on Mathoverflow we show that the Boolean

algebra P(ω)/fin contains a family {BX : X ⊆ c} of subalgebras with the
property that X ⊆ Y implies BY is a subalgebra of BX and if X ̸⊆ Y then

BY is not embeddable into BX . The proof proceeds by Stone duality and the

construction of a suitable family of separable zero-dimensional compact spaces.

Introduction

The purpose of this note is to give a more leisurely presentation, complete with
definitions and references, of an answer to a question on MathOverflow [3]:

Is there a strictly decreasing chain of subalgebras of the Boolean
algebra P(ω)/fin?

The answer to the question as stated is an obvious “yes”, but the poser of the
question asked for a sequence ⟨Bn : n ∈ ω⟩ of subalgebras such that Bn+1 ⊆ Bn

and Bn is not embeddable into Bn+1, for all n.
We shall show that the family of subalgebras of P(ω)/fin is rich enough to contain

such a sequence; in fact, there is a family {BX : X ⊆ c} of subalgebras with the
property that for all subsets X and Y of c we have: if X ⊆ Y then BY ⊆ BX and if
X ⊈ Y then BY is not embeddable into BX . This more than answers the question
and shows that one can even have a decreasing chain of length c or a chain or order
type that of the real line.

The construction of the family proceeds via Stone duality: rather than con-
structing subalgebras of P(ω)/fin we construct a family {KX : X ⊆ c} of sepa-
rable compact zero-dimensional spaces with the dual property that there is a set
{hX,Y : X ⊆ Y ⊆ c} of continuous maps, where hX,Y : KX → KY is a continuous
surjection and if X ⊈ Y then KX is not a continuous image of BY . In addition all
triangles in the set of maps will commute.

Then K∅ is a continuous image of ω∗, the Stone space of P(ω)/fin, and hence
so are all other spaces KX . The maps h∅,X embed the algebras of clopen sets of
theKX into P(ω)/fin, the commutativity of the triangles in the family of continuous
surjections yields the desired inclusions, and the nonexistence of further continuous
surjections dualizes to the nonexistence of further embeddings.

1. Preliminaries

1.1. Stone duality. Stone’s duality for Boolean algebras and compact zero-dimen-
sional spaces associates with every compact zero-dimensional space X its Boolean
algebra CX of closed-and-open subsets and conversely with every Boolean algebra B
a compact zero-dimensional space St(B), its Stone space. The associations are
each others inverses and they dualize various notions; the most important for us
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is that an embedding B → C of Boolean algebras becomes a continuous surjection
St(C) → St(B), and vice versa.

The book [5, Chapter 3] contains further information on Stone’s duality for
Boolean algebras and compact zero-dimensional spaces.

1.2. Bernstein sets. In our construction we shall uses Bernstein sets in [0, 1]. We
say A is a Bernstein set in [0, 1] if A and its complement both intersect every
uncountable closed set in [0, 1]. These are also called totally imperfect sets ([1])
because if a set is closed in [0, 1] and contained in A then it must be countable.

For other topological material we refer to [2]. The fact used here, that separable
compact spaces are continuous images of the remainder ω∗ can be proved using
Theorem 3.5.13 and Exercise 3.5.H of that book.

2. The spaces

The spaces are variations on Alexandroff’s double-arrow space A, called the two
arrows space in [2, Exercise 3.10.C].

The underlying set is D =
(
[0, 1]× {0, 1}

)
\
{
⟨0, 0⟩, ⟨0, 1⟩

}
, ordered lexicograph-

ically and endowed with the order topology. (We drop the points ⟨0, 0⟩ and ⟨0, 1⟩
because they would be (the only) isolated points of A.)

Pictorially we have taken the unit interval [0, 1] and split each point x of the
open interval (0, 1) into two copies, ⟨x, 0⟩ and ⟨x, 1⟩. The space A is compact and
separable, hence a continuous image of ω∗.

The variations will be obtained by specifying a subset X of (0, 1) and taking
AX = {⟨x, i⟩ ∈ D : x ∈ X → i = 0}; that is, by splitting the points of (0, 1) \ X
only. Thus we can write A = A∅, and [0, 1] = A(0,1) for example. In all our
examples the complement of X will be dense in (0, 1) and this will ensure that
AX is zero-dimensional.

If X ⊆ Y then there is a natural continuous surjection s : AX → AY , given by

• s(x, i) = ⟨x, i⟩ if x /∈ Y ;
• s(x, i) = ⟨x, 0⟩ if x ∈ Y \X; and
• s(x, 0) = ⟨x, 0⟩ if x ∈ X.

Our goal will be to create a family {SX : X ⊆ c} of subsets of (0, 1) such that
with KX = ASX

for all X we get our family {KX : X ⊆ c}.
We shall construct a family {Aα : α ∈ c} of subsets of (0, 1) (all disjoint from Q)

and put SX = Q ∪
⋃

α∈X Aα for X ⊆ c.
Clearly then X ⊆ Y implies SX ⊆ SY and hence that KX maps onto KY by

hX,Y : ASX
→ ASY

as described above. It is readily seen that hX,Z = hY,Z ◦ hX,Y

all triangles in this family commute, as described in the introduction.
It remains to construct the sets Aα in such a way that whenever X ⊈ Y each

of the Aα with α ∈ X \ Y will prohibit the existence of a continuous surjection
from KY onto KX .

To see how this may be accomplished note that since Aα ⊆ SX the points of Aα

are not split in ASX
. In that case the subspace topology that Aα inherits from ASX

is the same as the subspace topology that it inherits from [0, 1].
If s : KX → KY is continuous then the composition t ◦ s, where t : KY → [0, 1]

is the map that send ⟨x, i⟩ to x, is continuous as well and its restriction g to Aα is
also continuous. We shall arrange matters in such a way that the only maps that
can appear in this way will force the range of the map s to be countable.

3. The sets Aα

We can obtain our sets Aα by a direct application of Theorem 2.0 in [4] but to
keep this note reasonably self-contained we shall repeat the construction for the
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special case that we need. The method goes back to [7] and is occasionally referred
to as “Sierpiński’s technique of killing homeomorphisms” [6], but it can be used to
eliminate other maps as well.

In our case we consider the set F of all maps f that satisfy: dom f is a co-
countable subset of [0, 1] and f : dom f → [0, 1] is continuous. For every f ∈ F we
let S(f) = {x ∈ dom f : f(x) ̸= x} and E(f) = dom f \ S(f). We choose a subset
C(f) of dom f such that the restriction f : C(f) → f

[
S(f)

]
is a bijection.

Before we continue we make some remarks that will be useful later. For each
f ∈ F the domain is completely metrizable as it is a Gδ-subset of [0, 1]. As S(f) is
open in dom f , and E(f) is closed, both sets are completely metrizable as well.
Furthermore, the image f

[
S(f)

]
is an analytic subset of [0, 1]. By familiar results

from Descriptive Set Theory it follows that each of these sets either is countable
or contains a topological copy of the Cantor set. One can modify the construction
outlined in Problem 4.5.5 in [2] to prove these results.

This means that in each case we can check whether the set is countable by looking
at its intersection with some Bernstein set.

The following proposition yields the family {Aα : α ∈ c}.
Proposition 3.1. There is a pairwise disjoint family {V } ∪ {Aα : α ∈ c} of
Bernstein sets in (0, 1) with the following properties. All are disjoint from Q, and
for every f ∈ F : if f

[
S(f)

]
, and hence C(f), has cardinality c then for all α the

intersections C(f) ∩Aα and f
[
C(f) ∩Aα

]
∩ V both have cardinality c.

Proof. Since [0, 1] has cardinality c it also has c many co-countable subsets. Since
each subset of [0, 1] is separable every co-countable set has c many continuous
functions to [0, 1]. Hence we may enumerate the subfamily of F consisting of
those f for which f

[
S(f)

]
is uncountable as ⟨fβ : β ∈ c⟩, in such a way that every f

occurs c many times in the sequence. We take a similar enumeration ⟨Fβ : β ∈ c⟩
of the family of uncountable closed subsets of [0, 1] (each set is listed c times).

To facilitate the construction we replicate both enumerations c times and turn
them into c × c-matrices: {fα,β : ⟨α, β⟩ ∈ c2} and {Fα,β : ⟨α, β⟩ ∈ c2}, where
fα,β = fβ and Fα,β = Fβ for all α and β. We also take a well-order ≺ of c2 in order
type c,

By recursion on the well-order ≺ we will choose points aα,β , bα,β , uα,β , and vα,β ,
as follows.

When the points have been found for ⟨γ, δ⟩ ≺ ⟨α, β⟩ collect them and the ra-
tional numbers in a set: P = Q ∪

⋃
⟨γ,δ⟩≺⟨α,β⟩{aγ,δ, bγ,δ, uγ,δ, vγ,δ}. Note that the

cardinality of P is strictly smaller than c. Therefore we can find aα,β ∈ C(fα,β) \P
such that uα,β = fα,β(aα,β) /∈ P ; and note that uα,β ̸= aα,β . Next take points bα,β
and vα,β in Fα,β \ (P ∪ {aα,β , vα,β} such that bα,β ̸= vα,β .

Now, by construction all points chosen in this way are distinct. For every α ∈ c
we let

Aα = {aα,β : β ∈ c} ∪ {bα,β : β ∈ c}
we also let

V = {uα,β : ⟨α, β⟩ ∈ c2} ∪ {vα,β : ⟨α, β⟩ ∈ c2}
Because all points chosen are distinct the family {V } ∪ {Aα : α ∈ c} is pairwise
disjoint.

The sets are Bernstein sets because Aα ∩ F ⊇ {bα,β : F = Fα,β} and V ∩ F ⊇
{vα,β : F = Fα,β}, both intersections have cardinality c.

Likewise, if f
[
S(f)

]
has cardinality c then Aα ∩ C(f) ⊇ {aα,β : f = fα,β} and

V ∩ f [Aα ∩ C(f)] ⊇ {uα,β : f = fα,β}; again both sets have cardinality c. □

It now remains to show that the resulting family {KX : X ⊆ c} of compact zero-
dimensional spaces has the desired properties. We already know that KX maps



4 K. P. HART

onto KY if X ⊆ Y . We prove the other implication in the next section. There it
will become clear what the function of the set V is.

4. Non-existence of continuous surjections

The following lemma implies that if X and Y are subsets of c such that X ⊈ Y
then there is no continuous surjection from KX onto KY .

Lemma 4.1. Let X and Y be subsets of (0, 1) such that Q ⊆ X and such that
there is an α for which Aα ⊆ X and Y ∩ (Aα ∪ V ) = ∅. Then every continuous
map s : AX → AY has a countable range.

Proof. Let us write A for Aα and let t : AY → [0, 1] be the natural surjection. Also,
we identify x and ⟨x, 0⟩ when x ∈ X.

As observed before the topology on A in AX is the same as its subspace topology
in [0, 1]. Let g be the restriction of (t ◦ s) to A.

By one half of Lavrentieff’s theorem (Theorem 4.3.20 in [2]) we can find a Gδ-
set G that contains A and a continuous map f : G → [0, 1] that extends g. The
complement, C, of G in [0, 1] is a countable union of closed sets, each of which is
countable because closed sets that are disjoint from a Bernstein set are countable;
and A is a Bernstein set. It follows that f belongs to the family F .

The set A is dense in [0, 1], and the maps f and t ◦ s agree on A. This implies
that f determines much of the behaviour of s on G, in the following way.

• If x ∈ G ∩X then x is not split and (t ◦ s)(x) = f(x) and this implies that
s(x) ∈

{
⟨f(x), 0⟩, ⟨f(x), 1⟩

}
.

• If x ∈ G\X then x is split and the continuity of f implies that (t◦s)(x, 0) =
(t ◦ s)(x, 1) = f(x) and so

{
s(x, 0), s(x, 1)

}
⊆

{
⟨f(x), 0⟩, ⟨f(x), 1⟩

}
.

It follows that the range of s is contained in the union of f [G] × {0, 1} and the
image of the countable set of points whose first coordinates are in the countable
set C.

We finish the proof by showing that f [G] is countable.

Let x ∈ E(f)∩A, then f(x) = x and so s(x) = ⟨x, 0⟩ or s(x) = ⟨x, 1⟩. We divide
E(f) ∩A into two sets: E0 = {x : s(x) = ⟨x, 0⟩} and E1 = {x : s(x) = ⟨x, 1⟩}.

If x ∈ E0 then by continuity of s there is an interval (px, qx) with rational
end points such that s[(px, qx)] ⊆ [0, ⟨x, 0⟩]. Here we use that Q ⊆ X: we can
talk without ambiguity about intervals with rational end points. It is clear that
when x < y in E0 we have y ∈ (py, qy) \ (py, qy), and it follows that x 7→ (px, qx) is
injective. We deduce that E0 is countable. Likewise one shows that E1 is countable.

We see that E(f) ∩ A is countable, and because A is a Bernstein set it follows
that E(f) itself is countable

Next we let x ∈ C(f) ∩ A such that f(x) ∈ V . Then f(x) /∈ Y and so f(x) is
split in AY , and s(x) ∈ {⟨f(x), 0⟩, ⟨f(x), 1⟩

}
; we split {x ∈ C(f) ∩ A : f(x) ∈ V }

into C0 =
{
x : s(x) = ⟨f(x), 0⟩

}
and C1 =

{
x : s(x) = ⟨f(x), 1⟩

}
.

As above we take for x ∈ C0 an interval (px, qx) with rational end points such
that s[(px, qx)] ⊆ [0, ⟨f(x), 0⟩]. If x ̸= y in C0 then f(x) ̸= f(y) because f is
injective on C(f); if, say, f(x) < f(y) then y ∈ (py, qy) \ (py, qy) and it follows that
x 7→ (px, qx) is injective. We conclude, as above, that C0 is countable, as is C1.

We see that f [C(f)∩A]∩V is countable and hence, by the properties of the family
{V } ∪ {Aβ : β ∈ c} in Proposition 3.1, that f

[
S(f)

]
does not have cardinality c.

But as noted in the remarks before that proposition this means that f
[
S(f)

]
is

countable.
Thus we see that f [G] = f [E(f)] ∪ f

[
S(f)

]
is countable. □
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Now let X and Y be subsets of c such that X ⊈ Y and take α ∈ X \ Y . Then
SX and SY satisfy the conditions of Lemma 4.1. Indeed, by definition we have
Q ∪Aα ⊆ SX and (Aα ∪ V ) ∩ SY = ∅.

The lemma then tells us that every continuous map s : KX → KY has a count-
able range, so that KY is not a continuous image of KX .
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