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Abstract
We prove that compact Hausdorff spaces with a P-diagonal are metrizable. This answers problem 4.1

(and the equivalent problem 4.12) from Cascales et al. (2011).
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1. Introduction

The purpose of this note is to show that a compact space with a [P-diagonal is metrizable.

To explain the meaning of this statement we need to introduce a bit of notation and define
a few notions. For a space M (always assumed to be at least completely regular) we let IC(M)
denote the family of compact subsets of M. Following [4] we say that a space X is M-dominated
if there is a cover {Cx : K € K(M)} of X by compact subsets with the property that K € L
implies Cx < Cp.

In the case that we deal with, namely where M is the space of irrational numbers, we can
simplify the cover a bit and make it more amenable to combinatorial treatment. The space of
irrationals is homeomorphic to the product space w®, where w carries the discrete topology. We
shall reserve the letter P for this space.
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The set P is ordered coordinatewise: f < g means (Vn)(f(n) < g(n)). Using this order we
simplify the formulation of P-dominated as follows. If K is a compact subset of [P then the func-
tion fx, given by fx(n) = max{g(n) : g € K}, is well-defined. Using this one can easily verify
that a space X is P-dominated iff there is a cover (K7 : f € IP) of X by compact sets such that
f < g implies Ky C K,. We shall call such a cover an order-preserving cover by compact sets.

Finally then we say that a space X has a P-diagonal if the complement of the diagonal, A,
in X? is P-dominated. Problem 4.1 from [2] asks whether a compact space with a P-diagonal is
metrizable. The authors of that paper proved that the answer is positive if X is assumed to have
countable tightness, and in general if MA(R) is assumed. The latter proof used that assumption
to show that X has a small diagonal, which in turn implies that X has countable tightness so
that the first result applies. Thus, Problem 4.12 from [2], which asks if a compact space with a
P-diagonal has a small diagonal, is a natural reformulation of Problem 4.1.

The property of P-domination arose in the study of the geometry of topological vector spaces;
in [1] it was shown that if a locally convex space has a form of P-domination then its compact sets
are metrizable. The paper [2] contains more information and results leading up to its Problem 4.1.

The main result of [3] states that compact spaces with a P-diagonal are metrizable under
the assumption of the Continuum Hypothesis. The proof establishes that a compact space with a
P-diagonal that has uncountable tightness maps onto the Tychonoff cube [0, 1]! and no compact
space with a IP-diagonal maps onto the cube [0, 1]¢.

The principal result of this paper closes the gap between R and ¢ by establishing that no
compact space with a P-diagonal maps onto [0, 1]“!.

Furthermore we would like to point out that Lemma 3 establishes a Baire category type
property of 2¢!: in an order-preserving cover by compact sets there are many members with
non-empty interior in the Gs-topology.

2. Some preliminaries

In the proof of the main lemma, Lemma 3, we need to consider three cases, depending on the
values of the familiar cardinals b and 9. These are defined in terms of the mod finite order on
P: we say f<*gif {n : g(n) < f(n)} is finite. Then b is the minimum size of a subset of P
that is unbounded with respect to <*, and 0 is the minimum size of a dominating (i.e., cofinal)
set with respect to <*. Interestingly, 0 is also the minimum size of a dominating set with respect
to the coordinatewise order <; we shall use this in the proof of the main lemma. We refer to
Van Douwen'’s [6] for more information.

Since we shall be working with the Cantor cube 2*! we fix a bit of notation. If / is some
subset of w; then Fn(/, 2) denotes the set of finite partial functions from 7 to 2. We let 2<“!
denote the binary tree of countable sequences of zeros and ones. If s € Fn(w1, 2) then [s] denotes
{x € 2%t : 5 C x}; the family {[s] : s € Fn(wy, 2)} is the standard base for the product topology
of 21, Similarly, if p € 2<“! then [p] = {x € 2“! : p C x}, and the family {[p] : p € 2=“1}
is the standard base for what is called the Gs-topology on 2“!; a set dense with respect to this
topology will be called Gs-dense.

When working with powers of the form /“!, where I = w or I = 2, we use 75 to denote the
projection of /! onto [1\%,

In the proof of Lemma 3 we shall need the following result, due to Todorcevié.

Lemma 1 (/5, Theorem 1.3]). If b = R} then w®! has a subset, X, of cardinality R such that
for every A € [XT®! there are D € [A]N and § € wy such that 5[ D] = {d [ (w1 \$):d e D}
is dense in 0\, 0O
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Theorem 1.3 of [5] is actually formulated as a theorem about b: drop the assumption b = R
and replace every w; and X1 by b. As explained in [5] this shows that there are natural versions
of the S-space problem that do have ZFC solutions.

The lemma also holds with w replaced by 2, simply map w®! onto 2*! by taking all coor-
dinates modulo 2. In that case the density of 5[ D] can be expressed by saying that for every
s € Fn(wi \ 8, 2) the intersection D N [s] is nonempty.

3. BIG sets in 2%1

Let us call a subset, Y, of 2“! BIG if it is compact and projects onto some final product, that
is, there is a 8 € w; such that ws[Y] = 2¢1\%, The latter condition can be expressed without
mentioning projections as follows: there is a § € w; such that for every s € Fn(w; \ 8, 2) the
intersection Y N [s] is nonempty (and a dense set that is closed is equal to the whole space).

BIG sets are also big combinatorially, in the following sense.

Lemma 2. If Y is a BIG subset of 2°! then there is a node p in the tree 2<“! such that [p] C Y.

Proof. Let Y be BIG and fix a § witnessing this. After reindexing we can assume § = » and we
let B ={x e€2® :tCx}and Y, =Y N B, fort € 2.

Starting from #9 = () and so = & we build a sequence (¢, : n € w) in 2<% and a sequence
(sn 1 n € o) in Fn(w \ o, w) such that [s,] € 75[Y;, ] for all n.

Given f, we can choose i, < 2, and set f,11 = 1, * iy, such that [s,] N m5[Y;,, ] has
nonempty interior. Then choose an extension s, of s, such that [s,11] € ms[Yy, ,]. With a
bit of bookkeeping one can ensure that |_J, doms, is an initial segment of w; \ w. We let p be
the concatenation of _J,, #, and |, s,.

To see that p is as required let x € [p]. By construction we have x € [s,] for all n, so
that, again for all n, there is y, € Y;, such that y, and x agree above dom p. If s € Fn(w, 2)
determines a basic neighborhood of x then there is an m such that doms N dom p is a subset of
domt,, Udoms,,. Then y, € [s] for all n > m, so that the sequence (y, : n € w) converges to x,
which shows thatx € Y. [

4. Existence of BIG sets

It is clear that a compact space is P-dominated: simply let K s be the whole space for all
f. However, in our proof we shall encounter P-dominating covers that may consist of proper
subsets. Our next result shows that such a cover of 2! by compact sets must contain a BIG
subset.

Lemma 3. If (K¢ : f € IP) is an order-preserving cover of 2°! by compact sets then there is an
f such that K y is BIG.

Proof. We consider three cases.

First we assume 0 = 7. In this case we show outright that there are p € 2<“! and f € P
such that [p] € K. Let (fy : @ € w1) be a sequence that is <-dominating.

Working toward a contradiction we assume no p and f, as desired, can be found. This implies
that for every p and every f the intersection K y N[p] is nowhere dense in [p]. Indeed, if such an
intersection has interior then there is s € Fn(wg, 2) such that [s]N[p] is nonempty and contained
in Kr. It would then be an easy matter to find 0 € 2=“' that extends both p and s, and then
[c] € Ky.
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This allows us to choose an increasing sequence (o, : @ € i) in 2=*! such that [p,]NK 7, =
@ for all a. Then the point x = |, po does not belong to any K  because the K r, are cofinal in
the whole family.

Next we assume 0 > b = N;. We apply b = R to find a special subset X of 2“! as in
the comment after Lemma 1. In what follows, when t € w=“ we let K(¢) denote the union
UKyt < f)

We choose an increasing sequence (t, : n € w) in ®=<®, together with, for each n, an
uncountable subset A, of X, a countable subset D, of A,, and §, € w; such that A,, C K(z,)
and for all s € Fn(w; \ 8,, 2) the intersection D, N [s] is nonempty. Simply use that K (1) =
Ui K(t k) forall 7.

Let § = sup,, §, and enumerate each D, as (d(n, m) : m € w).

For each s € Fn(w; \ §,2) each D, intersects [s] so that we can define hy € w® by
hg(n) = min{m : d(n, m) € [s]}.

By 0 > R there is g € w® such that {n : hs(n) < g(n)} is infinite for all s.

Now let E = {d(n,m) : m < g(n),n € w} and observe that E meets [s] for every
s € Fn(wy \ 6, 2), so that 5[ E] is dense in 201\

For each n there is f,, € P that extends ¢, and is such that {d(n, m) : m < g(n)} is a subset of
Ky, As fn(n) = ty41(n) if m > n we may define f € P by f(n) = max{f,(n) : m € w} for
all n. Thus we find a single f such that E C Ky, which immediately implies that K f is BIG.

Our last case is when b > 8. We let A be the set of members, #, of =% for which there is a
o € 2= such that K () N [p] is Gs-dense in [p].

As K({)) = 2% we have () € A.

We show that if + € A, as witnessed by p, then there is an m; such that r x n € A whenever
n > my; as K(t xm) C K(t % n) whenever m < n it follows that we need to find just one n
such that t x n € A. Build, recursively, an increasing sequence p = pg € p; € pp C ---in 2<%
such that pg = p and, if possible, [p,+1] N K (¢ * n) = &; if such a p,41 cannot be found then
K (t xn) N[py]is Gs-dense in [p,] and we are done. So assume that the recursion does not stop
and set 0 = J,, pu: then [g] is disjoint from | J,, K (¢ * n), which is equal to K (r). This would
contradict Gs-density of K (¢) in [p].

We can define i € P recursively by h(n) = my,, together with an increasing sequence
(on : n € w)in 2= such that K(h | n) N [p,] is Gs-dense in [p,]. Let p = |J,, pn. then
K(h | n)N[p]is Gs-dense in [p] for all n.

Let § = domp and let s € Fn(w; \ §, 2). We know that K(k [ n) N [p] N [s] # & for all n.
So for every n we can take Ay, € IPthat extends A [ n and is such that Kp,, N [p] N [s] # 2.
Because hs ,(m) = h(m) if n > m we can define h; € P by hs(m) = max, hy ,(m).

As b > Ry we can find f > h such that sy <* f for all s. We claim that Ky N [p] N [s] # @
for all s, so that [p] € Ky (the closed set Ky N [p] is dense in [p]).

To see this take an s and let n be such that f(m) > hg(m) for m > n. It follows that
f(m) = h(m) = hg ,(m) form < nand f(m) = h(m) > hs ,(m) for m > n. This implies that
K meets [p] N [s]. O

Remark 4. The previous result is valid for all BIG sets: simply work inside [p], where p is as in
the conclusion of Lemma 2.

Remark 5. Lemma 3 generalizes itself to the following situation: let X be compact, let¢ : X —
21 be continuous and onto, and let (K s : f € IP) be an order-preserving cover of X by compact
sets. Then there is an f such that ¢[K ] is BIG.



A. Dow, K.P. Hart / Indagationes Mathematicae 27 (2016) 721-726 725

One can go one step further: take a closed subset Y of X such that ¢[Y] is BIG and conclude
that for some f € P the image ¢[Y N K 7] is BIG. Simply take o such that [p] C ¢[Y] and work
in the compact space ¥ N ¢ [[p]].

Remark 6. The reader may have pondered the need to consider three cases in the proof of
Lemma 3. The cases ® = ®; and b > R lead to fairly straightforward arguments because
each gives one a definite handle on things, be it a cofinal set of size X or the knowledge that
all R1-sized sets are bounded. The intermediate case, with just one unbounded set of size Ry,
is saved by Todoréevié’s non-trivial translation of such a set into a subset of 2¢! that is already
quite big.

It would be interesting to see if Lemma 3 can be proved using just one argument.

5. The main result

Now we show that a compact space with a P-diagonal does not admit a continuous map onto
[0, 1]*1 and deduce our main result.

Theorem 7. Assume X is a compact space that maps onto 2°!. Then X does not have a P-
diagonal.

Proof. Let ¢ : X — 2“! be continuous and onto. We use Remark 5 and say that a closed
subset, Y, of X is BIG if its image ¢[Y] is. That is, Y is BIG if there is a § € w; such that
Y Ng<[[s]] # @ forall s € Fn(w; \ 8, 2).

We observe the following: if Y is BIG, as witnessed by §, then for every s € Fn(w; \ 8, 2)
the intersection ¥ N ¢ [[s]] is BIG as well; this will be witnessed by any y that contains the
domain of s.

In order to prove our theorem we assume that X does have a P-diagonal, witnessed by
(Ky : F € P), and reach a contradiction.

In order for the final recursion in the proof to succeed we need some preparation. Enumerate
®=® in a one-to-one fashion as (#, : n € w), say in such a way that t,, C 7, implies m < n (so
that o = ()). We set Zp = X and given a BIG set Z,, we determine a BIG set Z,, as follows.
We check if there is a BIG subset Z of Z,, with the property that for no point z in Z are there a
BIG subset Y of Z and an f € PP with#, C f such that {z} x ¥ C K. If there is such a Z then
every BIG subset of it also has this property so we can pick one that is a proper subset of Z,, and
let it be Z,,1; if there is no such Z then Z, | = Z,. In the end we set Y = (1), Z,. The set ¥
is BIG: for each n we have y,, € w; witnessing BIGness of Z,, then §o = sup,, y, will witness
BIGness of Y.

Pick yo € Y, take ip € 2 distinct from ¢(yo)(Sp), let so = {(So,i0)}, and set Yy =
Y N ¢ [[s0]]. By the observation above, Yy is BIG. Also: ¢(y0) ¢ ¢[Yol, so that {yo} x Yo
is disjoint from the diagonal, A, of X. By Remark 5 we can find a BIG subset Y of Yy and
fo € Psuch that {yo} x Y1 C K.

The point yy belongs to all Z,, and for any n such that 7, > fy (meaning that ¢,(i) > fo(i)
for i € dom#1,) it, the point yg, witnesses that Z,,+1 = Z,, in the following sense. The reason for
having Z,,11 be a proper subset of Z, would be that for all z € Z and all BIG Z’ C Z and all
f € Pwitht, € f we would have {z} x Z' € K. However, yo and Y7 and fy show that this
did not happen.

The conclusion therefore is that for every such 7, we know that every BIG Z C Y does have
an element z and a BIG subset Z’ such that {z} x Z' € K r for some f € P that extends #,.
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This allows us to construct sequences (y, : n € w) (points in Y), (¥,, : n € w) (BIG subsets
of Y), and (f, : n € w) (in IP) such that

(1) yn € Yy, except forn =0,

(2) Ynt1 € Yo,

(3) {yn} x Yut1 € Ky,,

@ for1 2 frand frp1 2 fu [ (n+1).

As before we note that f,,,(n) = f,(n) whenever m > n, so we can define a function f € P by
f(n) = max{ f,,(n) : m € w}. Note that f > f,, for all n so that

{¥u} X Y41 S Ky, C Ky

for all n.

It follows that (y,, y») € Ky whenever m < n. This shows that (y,,, y) € Ky whenever
m € w and y is a cluster point of (y, : n € w). But then (y, y) € Ky for every cluster point y of
(yn : n € w). However, K ; was assumed to be disjoint from the diagonal of X. [J

We collect all previous results in the proof of our main theorem.

Theorem 8. Every compact space with a P-diagonal is metrizable.

Proof. As noted in the introduction the authors of [3] proved that a non-metrizable compact
space with a P-diagonal will map onto the Tychonoff cube [0, 1]“! or, equivalently, that it has a
closed subset that maps onto 2“!.

However that closed subset would be a compact space with a [P-diagonal that does map onto
2¢1_Theorem 7 says that this is impossible. [J
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