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Abstract

We prove that compact Hausdorff spaces with a P-diagonal are metrizable. This answers problem 4.1
(and the equivalent problem 4.12) from Cascales et al. (2011).
c⃝ 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this note is to show that a compact space with a P-diagonal is metrizable.
To explain the meaning of this statement we need to introduce a bit of notation and define

a few notions. For a space M (always assumed to be at least completely regular) we let K(M)

denote the family of compact subsets of M . Following [4] we say that a space X is M-dominated
if there is a cover {CK : K ∈ K(M)} of X by compact subsets with the property that K ⊆ L
implies CK ⊆ CL .

In the case that we deal with, namely where M is the space of irrational numbers, we can
simplify the cover a bit and make it more amenable to combinatorial treatment. The space of
irrationals is homeomorphic to the product space ωω, where ω carries the discrete topology. We
shall reserve the letter P for this space.
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The set P is ordered coordinatewise: f 6 g means (∀n)( f (n) 6 g(n)). Using this order we
simplify the formulation of P-dominated as follows. If K is a compact subset of P then the func-
tion fK , given by fK (n) = max{g(n) : g ∈ K }, is well-defined. Using this one can easily verify
that a space X is P-dominated iff there is a cover ⟨K f : f ∈ P⟩ of X by compact sets such that
f 6 g implies K f ⊆ Kg . We shall call such a cover an order-preserving cover by compact sets.

Finally then we say that a space X has a P-diagonal if the complement of the diagonal, ∆,
in X2 is P-dominated. Problem 4.1 from [2] asks whether a compact space with a P-diagonal is
metrizable. The authors of that paper proved that the answer is positive if X is assumed to have
countable tightness, and in general if MA(ℵ1) is assumed. The latter proof used that assumption
to show that X has a small diagonal, which in turn implies that X has countable tightness so
that the first result applies. Thus, Problem 4.12 from [2], which asks if a compact space with a
P-diagonal has a small diagonal, is a natural reformulation of Problem 4.1.

The property of P-domination arose in the study of the geometry of topological vector spaces;
in [1] it was shown that if a locally convex space has a form of P-domination then its compact sets
are metrizable. The paper [2] contains more information and results leading up to its Problem 4.1.

The main result of [3] states that compact spaces with a P-diagonal are metrizable under
the assumption of the Continuum Hypothesis. The proof establishes that a compact space with a
P-diagonal that has uncountable tightness maps onto the Tychonoff cube [0, 1]ω1 and no compact
space with a P-diagonal maps onto the cube [0, 1]c.

The principal result of this paper closes the gap between ℵ1 and c by establishing that no
compact space with a P-diagonal maps onto [0, 1]ω1 .

Furthermore we would like to point out that Lemma 3 establishes a Baire category type
property of 2ω1 : in an order-preserving cover by compact sets there are many members with
non-empty interior in the Gδ-topology.

2. Some preliminaries

In the proof of the main lemma, Lemma 3, we need to consider three cases, depending on the
values of the familiar cardinals b and d. These are defined in terms of the mod finite order on
P: we say f 6∗ g if {n : g(n) < f (n)} is finite. Then b is the minimum size of a subset of P
that is unbounded with respect to 6∗, and d is the minimum size of a dominating (i.e., cofinal)
set with respect to 6∗. Interestingly, d is also the minimum size of a dominating set with respect
to the coordinatewise order 6; we shall use this in the proof of the main lemma. We refer to
Van Douwen’s [6] for more information.

Since we shall be working with the Cantor cube 2ω1 we fix a bit of notation. If I is some
subset of ω1 then Fn(I, 2) denotes the set of finite partial functions from I to 2. We let 2<ω1

denote the binary tree of countable sequences of zeros and ones. If s ∈ Fn(ω1, 2) then [s] denotes
{x ∈ 2ω1 : s ⊆ x}; the family {[s] : s ∈ Fn(ω1, 2)} is the standard base for the product topology
of 2ω1 . Similarly, if ρ ∈ 2<ω1 then [ρ] = {x ∈ 2ω1 : ρ ⊆ x}, and the family {[ρ] : ρ ∈ 2<ω1}

is the standard base for what is called the Gδ-topology on 2ω1 ; a set dense with respect to this
topology will be called Gδ-dense.

When working with powers of the form I ω1 , where I = ω or I = 2, we use πδ to denote the
projection of I ω1 onto I ω1\δ .

In the proof of Lemma 3 we shall need the following result, due to Todorčević.

Lemma 1 ([5, Theorem 1.3]). If b = ℵ1 then ωω1 has a subset, X, of cardinality ℵ1 such that
for every A ∈ [X ]ℵ1 there are D ∈ [A]ℵ0 and δ ∈ ω1 such that πδ[D] = {d � (ω1 \ δ) : d ∈ D}
is dense in ωω1\δ . �
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Theorem 1.3 of [5] is actually formulated as a theorem about b: drop the assumption b = ℵ1
and replace every ω1 and ℵ1 by b. As explained in [5] this shows that there are natural versions
of the S-space problem that do have ZFC solutions.

The lemma also holds with ω replaced by 2, simply map ωω1 onto 2ω1 by taking all coor-
dinates modulo 2. In that case the density of πδ[D] can be expressed by saying that for every
s ∈ Fn(ω1 \ δ, 2) the intersection D ∩ [s] is nonempty.

3. BIG sets in 2ω1

Let us call a subset, Y , of 2ω1 BIG if it is compact and projects onto some final product, that
is, there is a δ ∈ ω1 such that πδ[Y ] = 2ω1\δ . The latter condition can be expressed without
mentioning projections as follows: there is a δ ∈ ω1 such that for every s ∈ Fn(ω1 \ δ, 2) the
intersection Y ∩ [s] is nonempty (and a dense set that is closed is equal to the whole space).

BIG sets are also big combinatorially, in the following sense.

Lemma 2. If Y is a BIG subset of 2ω1 then there is a node ρ in the tree 2<ω1 such that [ρ] ⊆ Y .

Proof. Let Y be BIG and fix a δ witnessing this. After reindexing we can assume δ = ω and we
let Bt = {x ∈ 2ω1 : t ⊂ x} and Yt = Y ∩ Bt for t ∈ 2<ω.

Starting from t0 = ⟨ ⟩ and s0 = ∅ we build a sequence ⟨tn : n ∈ ω⟩ in 2<ω and a sequence
⟨sn : n ∈ ω⟩ in Fn(ω1 \ ω, ω) such that [sn] ⊆ πδ[Ytn ] for all n.

Given tn we can choose in < 2, and set tn+1 = tn ∗ in , such that [sn] ∩ πδ[Ytn+1 ] has
nonempty interior. Then choose an extension sn+1 of sn such that [sn+1] ⊆ πδ[Ytn+1 ]. With a
bit of bookkeeping one can ensure that


n dom sn is an initial segment of ω1 \ ω. We let ρ be

the concatenation of


n tn and


n sn .
To see that ρ is as required let x ∈ [ρ]. By construction we have x ∈ [sn] for all n, so

that, again for all n, there is yn ∈ Ytn such that yn and x agree above dom ρ. If s ∈ Fn(ω1, 2)

determines a basic neighborhood of x then there is an m such that dom s ∩ dom ρ is a subset of
dom tm ∪ dom sm . Then yn ∈ [s] for all n > m, so that the sequence ⟨yn : n ∈ ω⟩ converges to x ,
which shows that x ∈ Y . �

4. Existence of BIG sets

It is clear that a compact space is P-dominated: simply let K f be the whole space for all
f . However, in our proof we shall encounter P-dominating covers that may consist of proper
subsets. Our next result shows that such a cover of 2ω1 by compact sets must contain a BIG
subset.

Lemma 3. If ⟨K f : f ∈ P⟩ is an order-preserving cover of 2ω1 by compact sets then there is an
f such that K f is BIG.

Proof. We consider three cases.
First we assume d = ℵ1. In this case we show outright that there are ρ ∈ 2<ω1 and f ∈ P

such that [ρ] ⊆ K f . Let ⟨ fα : α ∈ ω1⟩ be a sequence that is 6-dominating.
Working toward a contradiction we assume no ρ and f , as desired, can be found. This implies

that for every ρ and every f the intersection K f ∩[ρ] is nowhere dense in [ρ]. Indeed, if such an
intersection has interior then there is s ∈ Fn(ω1, 2) such that [s]∩ [ρ] is nonempty and contained
in K f . It would then be an easy matter to find σ ∈ 2<ω1 that extends both ρ and s, and then
[σ ] ⊆ K f .
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This allows us to choose an increasing sequence ⟨ρα : α ∈ ω1⟩ in 2<ω1 such that [ρα]∩K fα =

∅ for all α. Then the point x =


α ρα does not belong to any K f because the K fα are cofinal in
the whole family.

Next we assume d > b = ℵ1. We apply b = ℵ1 to find a special subset X of 2ω1 as in
the comment after Lemma 1. In what follows, when t ∈ ω<ω we let K (t) denote the union
{K f : t ⊆ f }.
We choose an increasing sequence ⟨tn : n ∈ ω⟩ in ω<ω, together with, for each n, an

uncountable subset An of X , a countable subset Dn of An , and δn ∈ ω1 such that An ⊆ K (tn)

and for all s ∈ Fn(ω1 \ δn, 2) the intersection Dn ∩ [s] is nonempty. Simply use that K (t) =
k K (t ∗ k) for all t .
Let δ = supn δn and enumerate each Dn as ⟨d(n, m) : m ∈ ω⟩.
For each s ∈ Fn(ω1 \ δ, 2) each Dn intersects [s] so that we can define hs ∈ ωω by

hs(n) = min{m : d(n, m) ∈ [s]}.
By d > ℵ1 there is g ∈ ωω such that {n : hs(n) < g(n)} is infinite for all s.
Now let E = {d(n, m) : m < g(n), n ∈ ω} and observe that E meets [s] for every

s ∈ Fn(ω1 \ δ, 2), so that πδ[E] is dense in 2ω1\δ .
For each n there is fn ∈ P that extends tn and is such that {d(n, m) : m < g(n)} is a subset of

K fn . As fm(n) = tn+1(n) if m > n we may define f ∈ P by f (n) = max{ fm(n) : m ∈ ω} for
all n. Thus we find a single f such that E ⊆ K f , which immediately implies that K f is BIG.

Our last case is when b > ℵ1. We let A be the set of members, t , of ω<ω for which there is a
ρ ∈ 2<ω1 such that K (t) ∩ [ρ] is Gδ-dense in [ρ].

As K (⟨ ⟩) = 2ω1 we have ⟨ ⟩ ∈ A.
We show that if t ∈ A, as witnessed by ρ, then there is an mt such that t ∗ n ∈ A whenever

n > mt ; as K (t ∗ m) ⊆ K (t ∗ n) whenever m 6 n it follows that we need to find just one n
such that t ∗ n ∈ A. Build, recursively, an increasing sequence ρ = ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ · · · in 2<ω1

such that ρ0 = ρ and, if possible, [ρn+1] ∩ K (t ∗ n) = ∅; if such a ρn+1 cannot be found then
K (t ∗ n) ∩ [ρn] is Gδ-dense in [ρn] and we are done. So assume that the recursion does not stop
and set ϱ =


n ρn ; then [ϱ] is disjoint from


n K (t ∗ n), which is equal to K (t). This would

contradict Gδ-density of K (t) in [ρ].
We can define h ∈ P recursively by h(n) = mh�n , together with an increasing sequence

⟨ρn : n ∈ ω⟩ in 2<ω1 such that K (h � n) ∩ [ρn] is Gδ-dense in [ρn]. Let ρ =


n ρn , then
K (h � n) ∩ [ρ] is Gδ-dense in [ρ] for all n.

Let δ = dom ρ and let s ∈ Fn(ω1 \ δ, 2). We know that K (h � n) ∩ [ρ] ∩ [s] ≠ ∅ for all n.
So for every n we can take hs,n ∈ P that extends h � n and is such that Khs,n ∩ [ρ] ∩ [s] ≠ ∅.
Because hs,n(m) = h(m) if n > m we can define hs ∈ P by hs(m) = maxn hs,n(m).

As b > ℵ1 we can find f > h such that hs 6∗ f for all s. We claim that K f ∩ [ρ] ∩ [s] ≠ ∅
for all s, so that [ρ] ⊆ K f (the closed set K f ∩ [ρ] is dense in [ρ]).

To see this take an s and let n be such that f (m) > hs(m) for m > n. It follows that
f (m) > h(m) = hs,n(m) for m 6 n and f (m) > h(m) > hs,n(m) for m > n. This implies that
K f meets [ρ] ∩ [s]. �

Remark 4. The previous result is valid for all BIG sets: simply work inside [ρ], where ρ is as in
the conclusion of Lemma 2.

Remark 5. Lemma 3 generalizes itself to the following situation: let X be compact, let ϕ : X →
2ω1 be continuous and onto, and let ⟨K f : f ∈ P⟩ be an order-preserving cover of X by compact
sets. Then there is an f such that ϕ[K f ] is BIG.
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One can go one step further: take a closed subset Y of X such that ϕ[Y ] is BIG and conclude
that for some f ∈ P the image ϕ[Y ∩ K f ] is BIG. Simply take ρ such that [ρ] ⊆ ϕ[Y ] and work
in the compact space Y ∩ ϕ←


[ρ]


.

Remark 6. The reader may have pondered the need to consider three cases in the proof of
Lemma 3. The cases d = ℵ1 and b > ℵ1 lead to fairly straightforward arguments because
each gives one a definite handle on things, be it a cofinal set of size ℵ1 or the knowledge that
all ℵ1-sized sets are bounded. The intermediate case, with just one unbounded set of size ℵ1,
is saved by Todorčević’s non-trivial translation of such a set into a subset of 2ω1 that is already
quite big.

It would be interesting to see if Lemma 3 can be proved using just one argument.

5. The main result

Now we show that a compact space with a P-diagonal does not admit a continuous map onto
[0, 1]ω1 and deduce our main result.

Theorem 7. Assume X is a compact space that maps onto 2ω1 . Then X does not have a P-
diagonal.

Proof. Let ϕ : X → 2ω1 be continuous and onto. We use Remark 5 and say that a closed
subset, Y , of X is BIG if its image ϕ[Y ] is. That is, Y is BIG if there is a δ ∈ ω1 such that
Y ∩ ϕ←


[s]


≠ ∅ for all s ∈ Fn(ω1 \ δ, 2).

We observe the following: if Y is BIG, as witnessed by δ, then for every s ∈ Fn(ω1 \ δ, 2)

the intersection Y ∩ ϕ←

[s]


is BIG as well; this will be witnessed by any γ that contains the

domain of s.
In order to prove our theorem we assume that X does have a P-diagonal, witnessed by

⟨K f : F ∈ P⟩, and reach a contradiction.
In order for the final recursion in the proof to succeed we need some preparation. Enumerate

ω<ω in a one-to-one fashion as ⟨tn : n ∈ ω⟩, say in such a way that tm ⊆ tn implies m 6 n (so
that t0 = ⟨ ⟩). We set Z0 = X and given a BIG set Zn we determine a BIG set Zn+1 as follows.
We check if there is a BIG subset Z of Zn with the property that for no point z in Z are there a
BIG subset Y of Z and an f ∈ P with tn ⊂ f such that {z} × Y ⊆ K f . If there is such a Z then
every BIG subset of it also has this property so we can pick one that is a proper subset of Zn and
let it be Zn+1; if there is no such Z then Zn+1 = Zn . In the end we set Y =


n Zn . The set Y

is BIG: for each n we have γn ∈ ω1 witnessing BIGness of Zn , then δ0 = supn γn will witness
BIGness of Y .

Pick y0 ∈ Y , take i0 ∈ 2 distinct from ϕ(y0)(δ0), let s0 = {⟨δ0, i0⟩}, and set Y0 =

Y ∩ ϕ←

[s0]


. By the observation above, Y0 is BIG. Also: ϕ(y0) ∉ ϕ[Y0], so that {y0} × Y0

is disjoint from the diagonal, ∆, of X . By Remark 5 we can find a BIG subset Y1 of Y0 and
f0 ∈ P such that {y0} × Y1 ⊆ K f0 .

The point y0 belongs to all Zn and for any n such that tn > f0 (meaning that tn(i) > f0(i)
for i ∈ dom tn) it, the point y0, witnesses that Zn+1 = Zn in the following sense. The reason for
having Zn+1 be a proper subset of Zn would be that for all z ∈ Z and all BIG Z ′ ⊆ Z and all
f ∈ P with tn ⊆ f we would have {z} × Z ′ ⊈ K f . However, y0 and Y1 and f0 show that this
did not happen.

The conclusion therefore is that for every such tn we know that every BIG Z ⊆ Y does have
an element z and a BIG subset Z ′ such that {z} × Z ′ ⊆ K f for some f ∈ P that extends tn .
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This allows us to construct sequences ⟨yn : n ∈ ω⟩ (points in Y ), ⟨Yn : n ∈ ω⟩ (BIG subsets
of Y ), and ⟨ fn : n ∈ ω⟩ (in P) such that

(1) yn ∈ Yn , except for n = 0,
(2) Yn+1 ⊆ Yn ,
(3) {yn} × Yn+1 ⊆ K fn ,
(4) fn+1 > fn and fn+1 ⊇ fn � (n + 1).

As before we note that fm(n) = fn(n) whenever m > n, so we can define a function f ∈ P by
f (n) = max{ fm(n) : m ∈ ω}. Note that f > fn for all n so that

{yn} × Yn+1 ⊆ K fn ⊆ K f

for all n.
It follows that ⟨ym, yn⟩ ∈ K f whenever m < n. This shows that ⟨ym, y⟩ ∈ K f whenever

m ∈ ω and y is a cluster point of ⟨yn : n ∈ ω⟩. But then ⟨y, y⟩ ∈ K f for every cluster point y of
⟨yn : n ∈ ω⟩. However, K f was assumed to be disjoint from the diagonal of X . �

We collect all previous results in the proof of our main theorem.

Theorem 8. Every compact space with a P-diagonal is metrizable.

Proof. As noted in the introduction the authors of [3] proved that a non-metrizable compact
space with a P-diagonal will map onto the Tychonoff cube [0, 1]ω1 or, equivalently, that it has a
closed subset that maps onto 2ω1 .

However that closed subset would be a compact space with a P-diagonal that does map onto
2ω1 . Theorem 7 says that this is impossible. �
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