

Available online at www.sciencedirect.com

ScienceDirect

indagationes mathematicae

Indagationes Mathematicae 27 (2016) 721-726

www.elsevier.com/locate/indag

Compact spaces with a \mathbb{P} -diagonal

Alan Dow^a, Klaas Pieter Hart^{b,*}

^a Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001, United States ^b Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands

Received 19 August 2015; received in revised form 13 January 2016; accepted 16 January 2016

Communicated by H.W. Broer

Abstract

We prove that compact Hausdorff spaces with a ℙ-diagonal are metrizable. This answers problem 4.1 (and the equivalent problem 4.12) from Cascales et al. (2011). © 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Compact space; Cantor cube; b; d; Diagonal; P-diagonal; P-dominated space; Metrizability

1. Introduction

The purpose of this note is to show that a compact space with a \mathbb{P} -diagonal is metrizable.

To explain the meaning of this statement we need to introduce a bit of notation and define a few notions. For a space M (always assumed to be at least completely regular) we let $\mathcal{K}(M)$ denote the family of compact subsets of M. Following [4] we say that a space X is M-dominated if there is a cover $\{C_K : K \in \mathcal{K}(M)\}$ of X by compact subsets with the property that $K \subseteq L$ implies $C_K \subseteq C_L$.

In the case that we deal with, namely where M is the space of irrational numbers, we can simplify the cover a bit and make it more amenable to combinatorial treatment. The space of irrationals is homeomorphic to the product space ω^{ω} , where ω carries the discrete topology. We shall reserve the letter \mathbb{P} for this space.

* Corresponding author. E-mail addresses: adow@uncc.edu (A. Dow), k.p.hart@tudelft.nl (K.P. Hart). URLs: http://www.math.uncc.edu/~adow (A. Dow), http://fa.its.tudelft.nl/~hart (K.P. Hart).

http://dx.doi.org/10.1016/j.indag.2016.01.005

^{0019-3577/© 2016} Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

The set \mathbb{P} is ordered coordinatewise: $f \leq g$ means $(\forall n)(f(n) \leq g(n))$. Using this order we simplify the formulation of \mathbb{P} -dominated as follows. If K is a compact subset of \mathbb{P} then the function f_K , given by $f_K(n) = \max\{g(n) : g \in K\}$, is well-defined. Using this one can easily verify that a space X is \mathbb{P} -dominated iff there is a cover $\langle K_f : f \in \mathbb{P} \rangle$ of X by compact sets such that $f \leq g$ implies $K_f \subseteq K_g$. We shall call such a cover an order-preserving cover by compact sets.

Finally then we say that a space X has a \mathbb{P} -diagonal if the complement of the diagonal, Δ , in X^2 is \mathbb{P} -dominated. Problem 4.1 from [2] asks whether a compact space with a \mathbb{P} -diagonal is metrizable. The authors of that paper proved that the answer is positive if X is assumed to have countable tightness, and in general if MA(\aleph_1) is assumed. The latter proof used that assumption to show that X has a small diagonal, which in turn implies that X has countable tightness so that the first result applies. Thus, Problem 4.12 from [2], which asks if a compact space with a \mathbb{P} -diagonal has a small diagonal, is a natural reformulation of Problem 4.1.

The property of \mathbb{P} -domination arose in the study of the geometry of topological vector spaces; in [1] it was shown that if a locally convex space has a form of \mathbb{P} -domination then its compact sets are metrizable. The paper [2] contains more information and results leading up to its Problem 4.1.

The main result of [3] states that compact spaces with a \mathbb{P} -diagonal are metrizable under the assumption of the Continuum Hypothesis. The proof establishes that a compact space with a \mathbb{P} -diagonal that has *uncountable* tightness maps onto the Tychonoff cube $[0, 1]^{\omega_1}$ and no compact space with a \mathbb{P} -diagonal maps onto the cube $[0, 1]^c$.

The principal result of this paper closes the gap between \aleph_1 and \mathfrak{c} by establishing that no compact space with a \mathbb{P} -diagonal maps onto $[0, 1]^{\omega_1}$.

Furthermore we would like to point out that Lemma 3 establishes a Baire category type property of 2^{ω_1} : in an order-preserving cover by compact sets there are many members with non-empty interior in the G_{δ} -topology.

2. Some preliminaries

In the proof of the main lemma, Lemma 3, we need to consider three cases, depending on the values of the familiar cardinals b and \mathfrak{d} . These are defined in terms of the mod finite order on \mathbb{P} : we say $f \leq g$ if $\{n : g(n) < f(n)\}$ is finite. Then b is the minimum size of a subset of \mathbb{P} that is unbounded with respect to $\leq g$, and \mathfrak{d} is the minimum size of a dominating (i.e., cofinal) set with respect to $\leq g$. Interestingly, \mathfrak{d} is also the minimum size of a dominating set with respect to the coordinatewise order \leq ; we shall use this in the proof of the main lemma. We refer to Van Douwen's [6] for more information.

Since we shall be working with the Cantor cube 2^{ω_1} we fix a bit of notation. If *I* is some subset of ω_1 then $\operatorname{Fn}(I, 2)$ denotes the set of finite partial functions from *I* to 2. We let $2^{<\omega_1}$ denote the binary tree of countable sequences of zeros and ones. If $s \in \operatorname{Fn}(\omega_1, 2)$ then [s] denotes $\{x \in 2^{\omega_1} : s \subseteq x\}$; the family $\{[s] : s \in \operatorname{Fn}(\omega_1, 2)\}$ is the standard base for the product topology of 2^{ω_1} . Similarly, if $\rho \in 2^{<\omega_1}$ then $[\rho] = \{x \in 2^{\omega_1} : \rho \subseteq x\}$, and the family $\{[\rho] : \rho \in 2^{<\omega_1}\}$ is the standard base for what is called the G_{δ} -topology on 2^{ω_1} ; a set dense with respect to this topology will be called G_{δ} -dense.

When working with powers of the form I^{ω_1} , where $I = \omega$ or I = 2, we use π_{δ} to denote the projection of I^{ω_1} onto $I^{\omega_1 \setminus \delta}$.

In the proof of Lemma 3 we shall need the following result, due to Todorčević.

Lemma 1 ([5, Theorem 1.3]). If $\mathfrak{b} = \mathfrak{H}_1$ then ω^{ω_1} has a subset, X, of cardinality \mathfrak{H}_1 such that for every $A \in [X]^{\mathfrak{H}_1}$ there are $D \in [A]^{\mathfrak{H}_0}$ and $\delta \in \omega_1$ such that $\pi_{\delta}[D] = \{d \upharpoonright (\omega_1 \setminus \delta) : d \in D\}$ is dense in $\omega^{\omega_1 \setminus \delta}$. \Box

Theorem 1.3 of [5] is actually formulated as a theorem about \mathfrak{b} : drop the assumption $\mathfrak{b} = \aleph_1$ and replace every ω_1 and \aleph_1 by \mathfrak{b} . As explained in [5] this shows that there are natural versions of the S-space problem that do have ZFC solutions.

The lemma also holds with ω replaced by 2, simply map ω^{ω_1} onto 2^{ω_1} by taking all coordinates modulo 2. In that case the density of $\pi_{\delta}[D]$ can be expressed by saying that for every $s \in \operatorname{Fn}(\omega_1 \setminus \delta, 2)$ the intersection $D \cap [s]$ is nonempty.

3. BIG sets in 2^{ω_1}

Let us call a subset, Y, of 2^{ω_1} BIG if it is compact and projects onto some final product, that is, there is a $\delta \in \omega_1$ such that $\pi_{\delta}[Y] = 2^{\omega_1 \setminus \delta}$. The latter condition can be expressed without mentioning projections as follows: there is a $\delta \in \omega_1$ such that for every $s \in \operatorname{Fn}(\omega_1 \setminus \delta, 2)$ the intersection $Y \cap [s]$ is nonempty (and a dense set that is closed is equal to the whole space).

BIG sets are also big combinatorially, in the following sense.

Lemma 2. If Y is a BIG subset of 2^{ω_1} then there is a node ρ in the tree $2^{<\omega_1}$ such that $[\rho] \subseteq Y$.

Proof. Let *Y* be BIG and fix a δ witnessing this. After reindexing we can assume $\delta = \omega$ and we let $B_t = \{x \in 2^{\omega_1} : t \subset x\}$ and $Y_t = Y \cap B_t$ for $t \in 2^{<\omega}$.

Starting from $t_0 = \langle \rangle$ and $s_0 = \emptyset$ we build a sequence $\langle t_n : n \in \omega \rangle$ in $2^{<\omega}$ and a sequence $\langle s_n : n \in \omega \rangle$ in $Fn(\omega_1 \setminus \omega, \omega)$ such that $[s_n] \subseteq \pi_{\delta}[Y_{t_n}]$ for all n.

Given t_n we can choose $i_n < 2$, and set $t_{n+1} = t_n * i_n$, such that $[s_n] \cap \pi_{\delta}[Y_{t_{n+1}}]$ has nonempty interior. Then choose an extension s_{n+1} of s_n such that $[s_{n+1}] \subseteq \pi_{\delta}[Y_{t_{n+1}}]$. With a bit of bookkeeping one can ensure that $\bigcup_n \text{dom } s_n$ is an initial segment of $\omega_1 \setminus \omega$. We let ρ be the concatenation of $\bigcup_n t_n$ and $\bigcup_n s_n$.

To see that ρ is as required let $x \in [\rho]$. By construction we have $x \in [s_n]$ for all n, so that, again for all n, there is $y_n \in Y_{t_n}$ such that y_n and x agree above dom ρ . If $s \in Fn(\omega_1, 2)$ determines a basic neighborhood of x then there is an m such that dom $s \cap$ dom ρ is a subset of dom $t_m \cup$ dom s_m . Then $y_n \in [s]$ for all $n \ge m$, so that the sequence $\langle y_n : n \in \omega \rangle$ converges to x, which shows that $x \in Y$. \Box

4. Existence of BIG sets

It is clear that a compact space is \mathbb{P} -dominated: simply let K_f be the whole space for all f. However, in our proof we shall encounter \mathbb{P} -dominating covers that may consist of proper subsets. Our next result shows that such a cover of 2^{ω_1} by compact sets must contain a BIG subset.

Lemma 3. If $\langle K_f : f \in \mathbb{P} \rangle$ is an order-preserving cover of 2^{ω_1} by compact sets then there is an f such that K_f is BIG.

Proof. We consider three cases.

First we assume $\mathfrak{d} = \aleph_1$. In this case we show outright that there are $\rho \in 2^{<\omega_1}$ and $f \in \mathbb{P}$ such that $[\rho] \subseteq K_f$. Let $\langle f_\alpha : \alpha \in \omega_1 \rangle$ be a sequence that is \leq -dominating.

Working toward a contradiction we assume no ρ and f, as desired, can be found. This implies that for every ρ and every f the intersection $K_f \cap [\rho]$ is nowhere dense in $[\rho]$. Indeed, if such an intersection has interior then there is $s \in \operatorname{Fn}(\omega_1, 2)$ such that $[s] \cap [\rho]$ is nonempty and contained in K_f . It would then be an easy matter to find $\sigma \in 2^{<\omega_1}$ that extends both ρ and s, and then $[\sigma] \subseteq K_f$. This allows us to choose an increasing sequence $\langle \rho_{\alpha} : \alpha \in \omega_1 \rangle$ in $2^{<\omega_1}$ such that $[\rho_{\alpha}] \cap K_{f_{\alpha}} = \emptyset$ for all α . Then the point $x = \bigcup_{\alpha} \rho_{\alpha}$ does not belong to any K_f because the $K_{f_{\alpha}}$ are cofinal in the whole family.

Next we assume $\mathfrak{d} > \mathfrak{b} = \aleph_1$. We apply $\mathfrak{b} = \aleph_1$ to find a special subset X of 2^{ω_1} as in the comment after Lemma 1. In what follows, when $t \in \omega^{<\omega}$ we let K(t) denote the union $\bigcup \{K_f : t \subseteq f\}$.

We choose an increasing sequence $\langle t_n : n \in \omega \rangle$ in $\omega^{<\omega}$, together with, for each n, an uncountable subset A_n of X, a countable subset D_n of A_n , and $\delta_n \in \omega_1$ such that $A_n \subseteq K(t_n)$ and for all $s \in \operatorname{Fn}(\omega_1 \setminus \delta_n, 2)$ the intersection $D_n \cap [s]$ is nonempty. Simply use that $K(t) = \bigcup_k K(t * k)$ for all t.

Let $\delta = \sup_n \delta_n$ and enumerate each D_n as $\langle d(n, m) : m \in \omega \rangle$.

For each $s \in Fn(\omega_1 \setminus \delta, 2)$ each D_n intersects [s] so that we can define $h_s \in \omega^{\omega}$ by $h_s(n) = \min\{m : d(n, m) \in [s]\}.$

By $\mathfrak{d} > \aleph_1$ there is $g \in \omega^{\omega}$ such that $\{n : h_s(n) < g(n)\}$ is infinite for all s.

Now let $E = \{d(n,m) : m < g(n), n \in \omega\}$ and observe that E meets [s] for every $s \in \operatorname{Fn}(\omega_1 \setminus \delta, 2)$, so that $\pi_{\delta}[E]$ is dense in $2^{\omega_1 \setminus \delta}$.

For each *n* there is $f_n \in \mathbb{P}$ that extends t_n and is such that $\{d(n, m) : m < g(n)\}$ is a subset of K_{f_n} . As $f_m(n) = t_{n+1}(n)$ if m > n we may define $f \in \mathbb{P}$ by $f(n) = \max\{f_m(n) : m \in \omega\}$ for all *n*. Thus we find a single *f* such that $E \subseteq K_f$, which immediately implies that K_f is BIG.

Our last case is when $b > \aleph_1$. We let A be the set of members, t, of $\omega^{<\omega}$ for which there is a $\rho \in 2^{<\omega_1}$ such that $K(t) \cap [\rho]$ is G_{δ} -dense in $[\rho]$.

As $K(\langle \rangle) = 2^{\omega_1}$ we have $\langle \rangle \in A$.

We show that if $t \in A$, as witnessed by ρ , then there is an m_t such that $t * n \in A$ whenever $n \ge m_t$; as $K(t * m) \subseteq K(t * n)$ whenever $m \le n$ it follows that we need to find just one n such that $t * n \in A$. Build, recursively, an increasing sequence $\rho = \rho_0 \subseteq \rho_1 \subseteq \rho_2 \subseteq \cdots$ in $2^{<\omega_1}$ such that $\rho_0 = \rho$ and, if possible, $[\rho_{n+1}] \cap K(t * n) = \emptyset$; if such a ρ_{n+1} cannot be found then $K(t * n) \cap [\rho_n]$ is G_{δ} -dense in $[\rho_n]$ and we are done. So assume that the recursion does not stop and set $\rho = \bigcup_n \rho_n$; then $[\rho]$ is disjoint from $\bigcup_n K(t * n)$, which is equal to K(t). This would contradict G_{δ} -density of K(t) in $[\rho]$.

We can define $h \in \mathbb{P}$ recursively by $h(n) = m_{h \upharpoonright n}$, together with an increasing sequence $\langle \rho_n : n \in \omega \rangle$ in $2^{<\omega_1}$ such that $K(h \upharpoonright n) \cap [\rho_n]$ is G_{δ} -dense in $[\rho_n]$. Let $\rho = \bigcup_n \rho_n$, then $K(h \upharpoonright n) \cap [\rho]$ is G_{δ} -dense in $[\rho]$ for all n.

Let $\delta = \text{dom } \rho$ and let $s \in \text{Fn}(\omega_1 \setminus \delta, 2)$. We know that $K(h \upharpoonright n) \cap [\rho] \cap [s] \neq \emptyset$ for all n. So for every n we can take $h_{s,n} \in \mathbb{P}$ that extends $h \upharpoonright n$ and is such that $K_{h_{s,n}} \cap [\rho] \cap [s] \neq \emptyset$. Because $h_{s,n}(m) = h(m)$ if n > m we can define $h_s \in \mathbb{P}$ by $h_s(m) = \max_n h_{s,n}(m)$.

As $\mathfrak{b} > \aleph_1$ we can find $f \ge h$ such that $h_s \le f$ for all s. We claim that $K_f \cap [\rho] \cap [s] \ne \emptyset$ for all s, so that $[\rho] \subseteq K_f$ (the closed set $K_f \cap [\rho]$ is dense in $[\rho]$).

To see this take an *s* and let *n* be such that $f(m) \ge h_s(m)$ for $m \ge n$. It follows that $f(m) \ge h(m) = h_{s,n}(m)$ for $m \le n$ and $f(m) \ge h(m) \ge h_{s,n}(m)$ for $m \ge n$. This implies that K_f meets $[\rho] \cap [s]$. \Box

Remark 4. The previous result is valid for all BIG sets: simply work inside $[\rho]$, where ρ is as in the conclusion of Lemma 2.

Remark 5. Lemma 3 generalizes itself to the following situation: let X be compact, let $\varphi : X \to 2^{\omega_1}$ be continuous and onto, and let $\langle K_f : f \in \mathbb{P} \rangle$ be an order-preserving cover of X by compact sets. Then there is an f such that $\varphi[K_f]$ is BIG.

One can go one step further: take a closed subset *Y* of *X* such that $\varphi[Y]$ is BIG and conclude that for some $f \in \mathbb{P}$ the image $\varphi[Y \cap K_f]$ is BIG. Simply take ρ such that $[\rho] \subseteq \varphi[Y]$ and work in the compact space $Y \cap \varphi^{\leftarrow}[\rho]$.

Remark 6. The reader may have pondered the need to consider three cases in the proof of Lemma 3. The cases $\mathfrak{d} = \aleph_1$ and $\mathfrak{b} > \aleph_1$ lead to fairly straightforward arguments because each gives one a definite handle on things, be it a cofinal set of size \aleph_1 or the knowledge that *all* \aleph_1 -sized sets are bounded. The intermediate case, with just one unbounded set of size \aleph_1 , is saved by Todorčević's non-trivial translation of such a set into a subset of 2^{ω_1} that is already quite big.

It would be interesting to see if Lemma 3 can be proved using just one argument.

5. The main result

Now we show that a compact space with a \mathbb{P} -diagonal does not admit a continuous map onto $[0, 1]^{\omega_1}$ and deduce our main result.

Theorem 7. Assume X is a compact space that maps onto 2^{ω_1} . Then X does not have a \mathbb{P} -diagonal.

Proof. Let $\varphi : X \to 2^{\omega_1}$ be continuous and onto. We use Remark 5 and say that a closed subset, *Y*, of *X* is BIG if its image $\varphi[Y]$ is. That is, *Y* is BIG if there is a $\delta \in \omega_1$ such that $Y \cap \varphi^{\leftarrow}[[s]] \neq \emptyset$ for all $s \in \operatorname{Fn}(\omega_1 \setminus \delta, 2)$.

We observe the following: if Y is BIG, as witnessed by δ , then for every $s \in \operatorname{Fn}(\omega_1 \setminus \delta, 2)$ the intersection $Y \cap \varphi^{\leftarrow}[[s]]$ is BIG as well; this will be witnessed by any γ that contains the domain of s.

In order to prove our theorem we assume that X does have a \mathbb{P} -diagonal, witnessed by $\langle K_f : F \in \mathbb{P} \rangle$, and reach a contradiction.

In order for the final recursion in the proof to succeed we need some preparation. Enumerate $\omega^{<\omega}$ in a one-to-one fashion as $\langle t_n : n \in \omega \rangle$, say in such a way that $t_m \subseteq t_n$ implies $m \leq n$ (so that $t_0 = \langle \rangle$). We set $Z_0 = X$ and given a BIG set Z_n we determine a BIG set Z_{n+1} as follows. We check if there is a BIG subset Z of Z_n with the property that for *no* point z in Z are there a BIG subset Y of Z and an $f \in \mathbb{P}$ with $t_n \subset f$ such that $\{z\} \times Y \subseteq K_f$. If there is such a Z then every BIG subset of it also has this property so we can pick one that is a proper subset of Z_n and let it be Z_{n+1} ; if there is no such Z then $Z_{n+1} = Z_n$. In the end we set $Y = \bigcap_n Z_n$. The set Y is BIG: for each n we have $\gamma_n \in \omega_1$ witnessing BIGness of Z_n , then $\delta_0 = \sup_n \gamma_n$ will witness BIGness of Y.

Pick $y_0 \in Y$, take $i_0 \in 2$ distinct from $\varphi(y_0)(\delta_0)$, let $s_0 = \{\langle \delta_0, i_0 \rangle\}$, and set $Y_0 = Y \cap \varphi^{\leftarrow}[[s_0]]$. By the observation above, Y_0 is BIG. Also: $\varphi(y_0) \notin \varphi[Y_0]$, so that $\{y_0\} \times Y_0$ is disjoint from the diagonal, Δ , of X. By Remark 5 we can find a BIG subset Y_1 of Y_0 and $f_0 \in \mathbb{P}$ such that $\{y_0\} \times Y_1 \subseteq K_{f_0}$.

The point y_0 belongs to all Z_n and for any n such that $t_n \ge f_0$ (meaning that $t_n(i) \ge f_0(i)$ for $i \in \text{dom } t_n$) it, the point y_0 , witnesses that $Z_{n+1} = Z_n$ in the following sense. The reason for having Z_{n+1} be a proper subset of Z_n would be that for all $z \in Z$ and all BIG $Z' \subseteq Z$ and all $f \in \mathbb{P}$ with $t_n \subseteq f$ we would have $\{z\} \times Z' \not\subseteq K_f$. However, y_0 and Y_1 and f_0 show that this did not happen.

The conclusion therefore is that for every such t_n we know that every BIG $Z \subseteq Y$ does have an element z and a BIG subset Z' such that $\{z\} \times Z' \subseteq K_f$ for some $f \in \mathbb{P}$ that extends t_n . This allows us to construct sequences $\langle y_n : n \in \omega \rangle$ (points in *Y*), $\langle Y_n : n \in \omega \rangle$ (BIG subsets of *Y*), and $\langle f_n : n \in \omega \rangle$ (in \mathbb{P}) such that

- (1) $y_n \in Y_n$, except for n = 0,
- (2) $Y_{n+1} \subseteq Y_n$,
- $(3) \{y_n\} \times Y_{n+1} \subseteq K_{f_n},$
- (4) $f_{n+1} \ge f_n$ and $f_{n+1} \supseteq f_n \upharpoonright (n+1)$.

As before we note that $f_m(n) = f_n(n)$ whenever $m \ge n$, so we can define a function $f \in \mathbb{P}$ by $f(n) = \max\{f_m(n) : m \in \omega\}$. Note that $f \ge f_n$ for all n so that

 $\{y_n\} \times Y_{n+1} \subseteq K_{f_n} \subseteq K_f$

for all *n*.

It follows that $\langle y_m, y_n \rangle \in K_f$ whenever m < n. This shows that $\langle y_m, y \rangle \in K_f$ whenever $m \in \omega$ and y is a cluster point of $\langle y_n : n \in \omega \rangle$. But then $\langle y, y \rangle \in K_f$ for every cluster point y of $\langle y_n : n \in \omega \rangle$. However, K_f was assumed to be disjoint from the diagonal of X. \Box

We collect all previous results in the proof of our main theorem.

Theorem 8. Every compact space with a \mathbb{P} -diagonal is metrizable.

Proof. As noted in the introduction the authors of [3] proved that a non-metrizable compact space with a \mathbb{P} -diagonal will map onto the Tychonoff cube $[0, 1]^{\omega_1}$ or, equivalently, that it has a closed subset that maps onto 2^{ω_1} .

However that closed subset would be a compact space with a \mathbb{P} -diagonal that *does* map onto 2^{ω_1} . Theorem 7 says that this is impossible. \Box

References

- B. Cascales, J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (3) (1987) 365–381. http://dx.doi.org/10.1007/BF01161762. MR895307 (88i:46021).
- [2] B. Cascales, J. Orihuela, V.V. Tkachuk, Domination by second countable spaces and Lindelöf Σ-property, Topology Appl. 158 (2) (2011) 204–214. http://dx.doi.org/10.1016/j.topol.2010.10.014. MR2739891 (2011j:54018).
- [3] Alan Dow, David Guerrero Sánchez, Domination conditions under which a compact space is metrisable, Bull. Aust. Math. Soc. 91 (3) (2015) 502–507. http://dx.doi.org/10.1017/S0004972714001130. MR3338973.
- [4] V.V. Tkachuk, A space C_p(X) is dominated by irrationals if and only if it is K-analytic, Acta Math. Hungar. 107 (4) (2005) 253–265. http://dx.doi.org/10.1007/s10474-005-0194-y. MR2150789 (2006e:54007).
- [5] Stevo Todorčević, Partition problems in topology, in: Contemporary Mathematics, Vol. 84, American Mathematical Society, Providence, RI, 1989, http://dx.doi.org/10.1090/conm/084. MR980949 (90d:04001).
- [6] Eric K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR776622 (87f:54008).