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0. Introduction

The Katowice problem, posed by Marian Turzański, is about Čech–Stone remainders of discrete spaces. 
Let κ and λ be two infinite cardinals, endowed with the discrete topology. The Katowice problem asks:

If the remainders κ∗ and λ∗ are homeomorphic must the cardinals κ and λ be equal?

Since the weight of κ∗ is equal to 2κ it is immediate that the Generalized Continuum Hypothesis implies 
a yes answer. In joint work Balcar and Frankiewicz established that the answer is actually positive without 
any additional assumptions, except possibly for the first two infinite cardinals. More precisely

Theorem ([1,5]). If 〈κ, λ〉 �= 〈ℵ0, ℵ1〉 and κ < λ then the remainders κ∗ and λ∗ are not homeomorphic.

This leaves open the following problem.

Question. Is it consistent that ω∗
0 and ω∗

1 are homeomorphic?

Through the years various consequences of “ω∗
0 and ω∗

1 are homeomorphic” were collected, in the hope 
that their conjunction would imply 0 = 1 and thus yield a full positive answer to the Katowice problem.

In the present paper we add another consequence, namely that there is a non-trivial autohomeomorphism 
of ω∗

0 . Whether this is a consequence was asked by Nyikos in [7] (as Problem 441 in the whole volume [8]), 
right after he mentioned the relatively easy fact that ω∗

1 has a non-trivial autohomeomorphism if ω∗
0 and 

ω∗
1 are homeomorphic, see the end of Section 1.
After some preliminaries in Section 1 we construct our non-trivial autohomeomorphism of ω∗

0 in Section 2. 
In Section 3 we shall discuss the consequences alluded to above and formulate a structural question related 
to them; Section 4 contains some consistency results regarding that structural question.

1. Preliminaries

We deal with Čech–Stone compactifications of discrete spaces exclusively. Probably the most direct way 
of defining βκ, for a cardinal κ with the discrete topology, is as the space of ultrafilters of the Boolean 
algebra P(κ), as explained in [6] for example.

The remainder βκ \ κ is denoted κ∗ and we extend the notation A∗ to denote clA ∩ κ∗ for all subsets 
of κ. It is well known that {A∗ : A ⊆ κ} is exactly the family of clopen subsets of κ∗.

All relations between sets of the form A∗ translate back to the original sets by adding the modifier 
“modulo finite sets”. Thus, A∗ = ∅ iff A is finite, A∗ ⊆ B∗ iff A \B is finite and so on.

This means that we can also look at our question as an algebraic problem:

Question. Is it consistent that the Boolean algebras P(ω0)/fin and P(ω1)/fin are isomorphic?

Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader can interpret A∗ as the 
equivalence class of A in the quotient algebra and read the proof in Section 2 below as establishing that 
there is a non-trivial automorphism of the Boolean algebra P(ω0)/fin.

1.1. Auto(homeo)morphisms

It is straightforward to define autohomeomorphisms of spaces of the form κ∗: take a bijection σ : κ → κ

and let it act in the obvious way on the set of ultrafilters to get an autohomeomorphism of βκ that leaves 



232 D. Chodounský et al. / Topology and its Applications 213 (2016) 230–237
κ∗ invariant. In fact, if we want to induce an autohomeomorphism on κ∗ then it suffices to take a bijection 
between cofinite subsets of κ.

We shall call an autohomeomorphism of κ∗ trivial if it is induced in the above way, otherwise we shall 
call it non-trivial. For example the simple shift s : n �→ n + 1 on ω0 determines an autohomeomorphism s∗

of ω∗
0 .

A non-trivial autohomeomorphism for ω∗
1 . For the reader’s edification and to give the flavour of the ar-

guments in the next section we prove that the autohomeomorphism s∗ of ω∗
0 , introduced above, has no 

non-trivial invariant clopen sets. From this we shall deduce that if ω∗
0 and ω∗

1 are homeomorphic then ω∗
1

must have a non-trivial autohomeomorphism.
Assume A ⊆ ω0 is such that s∗[A∗] = A∗; translated back to ω0 this means that the symmetric difference 

of s[A] and A is finite. Let K ∈ ω be so large that this symmetric difference is contained in K.
If k � K and k ∈ A then k + 1 ∈ s[A] and hence k + 1 ∈ A, and likewise if k � K and k /∈ A then 

k + 1 /∈ s[A] and hence k + 1 /∈ A. It follows that if K ∈ A then ω0 \K ⊆ A and so A∗ = ω∗
0 , and if K /∈ A

then A ∩ (ω0 \K) = ∅ and so A∗ = ∅.
It is an elementary fact about ω1 that for every subset A of ω1 and every map f : A → ω1 there are 

uncountably many α ∈ ω1 such that f [A ∩ α] ⊆ α; in particular, if f is a bijection between cofinite sets A

and B one has f [A ∩α] = B ∩α for arbitrarily large α. This then implies that trivial autohomeomorphisms 
of ω∗

1 have many non-trivial clopen invariant sets.
And so, if ω∗

0 and ω∗
1 are homeomorphic then ω∗

1 must have a non-trivial autohomeomorphism. This result 
can be found as Corollary 1 to Theorem 4.1 in [7], where the latter result is credited to [4]. The present 
argument is probably folklore.

2. A non-trivial auto(homeo)morphism

In this section we prove our main result. We let γ : ω∗
0 → ω∗

1 be a homeomorphism and use it to construct 
a non-trivial autohomeomorphism of ω∗

0 .
We consider the discrete space of cardinality ℵ1 in the guise of Z × ω1. A natural bijection of this set 

to itself is the shift to the right, defined by σ(n, α) = 〈n + 1, α〉. The restriction, σ∗, of its Čech–Stone 
extension, βσ, to (Z × ω1)∗ is an autohomeomorphism. We prove that ρ = γ−1 ◦ σ∗ ◦ γ is a non-trivial 
autohomeomorphism of ω∗

0 . To this end we assume there is a bijection g : A → B between cofinite sets that 
induces ρ and establish a contradiction.

2.1. Properties of σ∗ and (Z × ω1)∗

We define three types of sets that will be useful in the proof: vertical lines Vn = {n} × ω1, horizontal 
lines Hα = Z × {α} and end sets Eα = Z × [α, ω1).

These have the following properties.

Claim 2.1.1. σ∗[V ∗
n ] = V ∗

n+1 for all n. �
Claim 2.1.2. {H∗

α : α < ω1} is a maximal disjoint family of σ∗-invariant clopen sets.

Proof. It is clear that σ∗[H∗
α] = H∗

α for all α.
To establish maximality of the family let C ⊆ Z × ω1 be infinite and such that C ∩Hα =∗ ∅ for all α; 

then A = {α : C ∩Hα �= ∅} is infinite.
For each α ∈ A let nα = max{n : 〈n, α〉 ∈ C}; then {〈nα +1, α〉 : α ∈ A} is an infinite subset of σ[C] \C, 

and hence σ∗[C∗] �= C∗. �
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Claim 2.1.3. If C ⊆ Z × ω1 is such that H∗
α ⊆ C∗ for uncountably many α then there is a subset S of V0

such that S∗ ∩ E∗
α �= ∅ for all α and (σ∗)n[S∗] ⊆ C∗ for all but finitely many n in Z.

Proof. For each α such that H∗
α ⊆ C∗ let Fα be the finite set {n : 〈n, α〉 /∈ C}. There are a fixed finite set F

and an uncountable subset A of ω1 such that Fα = F for all α ∈ A; S = {0} ×A is as required. �
2.2. Translation to ω0 and ω∗

0

We choose infinite subsets vn (for n ∈ Z), and hα and eα (for α ∈ ω1) such that for all n and α we have 
v∗n = γ←[V ∗

n ], h∗
α = γ←[H∗

α], and e∗α = γ←[E∗
α].

Thus we obtain an almost disjoint family {vn : n ∈ Z} ∪{hα : α ∈ ω1} with properties analogous to those 
of the family {Vn : n ∈ Z} ∪ {Hα : α ∈ ω1}, these are

Claim 2.2.1. g[vn] =∗ vn+1 for all n. �
Claim 2.2.2. {h∗

α : α < ω1} is a maximal disjoint family of g∗-invariant clopen sets. �
Claim 2.2.3. If c is such that hα ⊆∗ c for uncountably many α then there is a subset s of v0 such that s ∩ eα
is infinite for all α and such that gn[s] ⊆∗ c for all but finitely many n in Z. �
2.3. Orbits of g

By defining finitely many extra values we can assume that at least one of A and B is equal to ω and, 
upon replacing σ by its inverse, we may as well assume that A = ω.

For k ∈ ω we let Ik = {n ∈ Z : gn(k) is defined} and Ok = {gn(k) : n ∈ Ik} (the orbit of k).
We shall say that a set a splits a set b if both b ∩ a and b \ a are nonempty.

Claim 2.3.1. Each hα splits only finitely many orbits.

Proof. If hα splits Ok then there is an n ∈ Ik such that gn(k) ∈ hα but (at least) one of gn+1(k) and 
gn−1(k) is not in hα. So either gn+1(k) ∈ g[hα] \ hα or gn(k) ∈ hα \ g[hα].

It follows that each orbit split by hα meets the symmetric difference of g[hα] and hα; as the latter set is 
finite and orbits are disjoint only finitely many orbits can intersect it. �

We divide ω into two sets: F , the union of all finite g-orbits, and G, the union of all infinite g-orbits.

Claim 2.3.2. If Ok is infinite then there are at most two αs for which Ok ∩ hα is infinite.

Proof. First we let k ∈ ω \ B; in this case Ik = ω. The set O∗
k is g∗-invariant, hence Ok ∩ hα is infinite 

for some α. In fact: Ok ⊆∗ hα (and so α is unique); for let J = {n : gn(k) ∈ hα and gn+1(k) /∈ hα}, then 
{gn+1(k) : n ∈ J} ⊆ g[hα] \ hα so that J is finite.

It follows that the set X =
⋃
{Ok : k ∈ ω \B} is, save for a finite set, covered by finitely many of the hα.

Next let k ∈ ω \ X; in this case Ik = Z and both sets {gn(k) : n < 0}∗ and {gn(k) : n � 0}∗ are 
g∗-invariant. The argument above applied to both sets yields α1 and α2 (possibly identical) such that 
{gn(k) : n < 0} ⊆∗ hα1 and {gn(k) : n � 0} ⊆∗ hα2 . �

The following claim is the last step towards our final contradiction.

Claim 2.3.3. For all but countably many α we have hα ⊆∗ F .
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Proof. By Claim 2.3.2 the set D of those α for which hα meets an infinite orbit in an infinite set is countable: 
each such orbit meets at most two hαs and there are only countably many orbits of course.

If α /∈ D then hα meets every infinite orbit in a finite set and it splits only finitely many of these, which 
means that it intersects only finitely many infinite orbits, and hence that it meets G in a finite set. �
2.4. The final contradiction

We now apply Claim 2.2.3 to F . It follows that there is an infinite subset s of v0 such that gn[s] ⊆∗ F for 
all but finitely many n. In fact, as F is g-invariant one n0 suffices: we can then first assume that gn0 [s] ⊆ F

(drop finitely many points from s) and then use g-invariance of F to deduce that gn[s] ⊆ F for all n.
Let E =

⋃
k∈s Ok; as a union of orbits this set is g-invariant. There must therefore be an α such that 

E ∩ hα is infinite. Now there are infinitely many k ∈ E such that hα intersects Ok; by Claim 2.3.1 hα must 
contain all but finitely many of these. This means that Ok ⊂ hα for infinitely many k ∈ s and hence that 
hα ∩ v0 is infinite, which is a contradiction because hα and v0 were assumed to be almost disjoint.

2.5. An alternative contradiction

For each α the set H∗
α splits into two minimal σ∗-invariant clopen sets, to wit {〈n, α〉 : n < 0}∗ and 

{〈n, α〉 : n � 0}∗ (apply the argument in subsection 1.1). Therefore the same is true for each h∗
α with 

respect to ρ. However, with the notation as above we find infinitely many ρ-invariant clopen subsets of h∗
α, 

for every infinite subset t of s we can take (
⋃

k∈t Ok)∗. Now split s into infinitely many infinite subsets.

3. A question

Our result does not settle the Katowice problem but it may point toward a final solution. We list the 
known consequences of the existence of a homeomorphism between ω∗

0 and ω∗
1 .

(1) 2ℵ0 = 2ℵ1

(2) d = ℵ1
(3) there is a strong-Q-sequence
(4) there is a strictly increasing ω1-sequence O of clopen sets in ω∗

0 such that 
⋃
O is dense and ω∗

0 \
⋃

O
contains no P -points

The first consequence simply says that the weights of ω∗
0 and ω∗

1 are equal. Equality (2) was established 
in [1] as a major step in the proof of the theorem in the Introduction and statement (4) is [7, Theorem 3.5].

To explain (3) we need to define what a strong-Q-sequence is: a sequence 〈Aα : α ∈ ω1〉 of infinite 
subsets of ω with the property that for every choice 〈xα : α ∈ ω1〉 of subsets (xα ⊆ Aα) there is a single 
subset x of ω such that xα =∗ Aα ∩ x for all α. In [9] Steprāns showed the consistency of the existence of 
strong-Q-sequences with ZFC.

Not only is each of these consequences consistent with ZFC but in [2] Chodounský provides a model 
where these consequences hold simultaneously.

We shall now reprove the three structural consequences using the same sets that we employed in the 
construction of the non-trivial autohomeomorphism. We use the sets vn to make ω resemble Z × ω: first 
make them pairwise disjoint and then identify vn with {n} × ω via some bijection between ω and Z × ω.

Our consequences are now obtained as follows:

(2) For every α < ω1 define fα : Z → ω by fα(m) = min{n : 〈m, n〉 ∈ eα}; the family {fα : α < ω1}
witnesses d = ℵ1: for every f : Z → ω there is an α such that {n : f(n) � fα(n)} is finite. Indeed, take 
A such that A∗ = γ

[
{〈m, n〉 : n � f(m)}∗

]
and observe that there is an α such that Eα ∩A = ∅.
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(3) The family {hα : α ∈ ω1} is a strong-Q-sequence: assume a subset xα of hα is given for all α; then 
there is a single subset x of ω such that x∗ ∩ h∗

α = x∗
α for all α. To see this take Xα ⊆ Hα such that 

X∗
α = γ[x∗

α] and put X =
⋃

α Xα then X ∩Hα = Xα and hence γ←[X∗] ∩ h∗
α = x∗

α for all α.
(4) Let bα be the complement of eα and let Bα be the complement of Eα. Then 〈b∗α : α < ω1〉 is the required 

sequence: in ω∗
1 the complement of

⋃
α B∗

α consists of the uniform ultrafilters on ω1; none of these is a 
P-point.

To this list we can now add the existence of a non-trivial auto(homeo)morphism ρ and a disjoint family 
{vn : n ∈ Z} of infinite subsets of ω0 such that

(5) {vn : n ∈ Z} ∪ {hα : α < ω1} is almost disjoint,
(6) ρ[v∗n] = v∗n+1 for all n,
(7) {h∗

α : α < ω1} is a maximal disjoint family of ρ-invariant sets, and
(8) for each α the sets (hα ∩

⋃
n<0 vn)∗ and (hα ∩

⋃
n�0 vn)∗ are minimal clopen ρ-invariant sets.

Since the family {hα : α < ω1} is a strong-Q-sequence one can find for any (uncountable) subset A of ω1
an infinite set XA such that hα ⊆∗ XA if α ∈ A and hα ∩XA =∗ ∅ if α /∈ A.

Our proof shows that ρ is in fact non-trivial on every such set XA whenever A is uncountable.

Remark 3.1. Consequence (1) above is the equality 2ℵ0 = 2ℵ1 ; it does not specify the common value any 
further. We can actually assume, without loss of generality, that 2ℵ0 = 2ℵ1 = ℵ2. Indeed, one can collapse 
2ℵ1 to ℵ2 by adding a Cohen subset of ω2; this forcing adds no new subsets of ω1 of cardinality ℵ1 or less, 
so any isomorphism between P(ω0)/fin and P(ω1)/fin will survive.

Remark 3.2. It is straightforward to show that the completions of P(ω0)/fin and P(ω1)/fin are isomorphic, 
e.g., by taking maximal almost disjoint families of countable sets in both P(ω0) and P(ω1) of cardinality c. 
These represent maximal antichains in the completions consisting of mutually isomorphic elements and 
a global isomorphism will be the result of combining the local isomorphisms. This argument works for all 
cardinals κ that satisfy κℵ0 = c, that is, for every cardinal κ in the interval [ℵ0, c] the completion of P(κ)/fin
is isomorphic to the completion of P(ω0)/fin, see [2, Corollary 1.2.7].

Thus, it will most likely be the incompleteness properties of the algebras that decide the outcome of the 
Katowice problem.

4. Some consistency

To see what is possible consistency-wise we indicate how some of the features of the edifice that we 
erected, based on the assumption that ω∗

0 and ω∗
1 are homeomorphic, can occur simultaneously. For this we 

consider the ideal I generated by the finite sets together with the sets bα (the complements of the sets eα). 
This ideal satisfies the following properties:

(1) I is non-meager,
(2) I intersects every P-point,
(3) I is generated by the increasing tower {bα : α < ω1}, and
(4) the differences bα+1 \ bα form a strong-Q-sequence.

We have already established properties (2), (3) and (4).
We are left with property (1); that I must be non-meager was already known to B. Balcar and P. Simon.
We recall that a family of subsets of ω0 is said to be meager if, upon identifying sets with their charac-

teristic functions, it is meager in the product space 2ω.
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Lemma 4.1. I is not meager.

Proof. We assume I is meager and apply [10, Théorème 21] to find a sequence 〈Fn : n ∈ ω〉 of pairwise 
disjoint finite sets with the property that {n : I ∩ Fn �= ∅} is finite whenever I ∈ I. By contraposition we 
find that whenever X is an infinite subset of ω the set FX =

⋃
n∈X Fn does not belong to I; this means 

that if γ[F ∗
X ] = G∗

X then GX must be an uncountable subset of Z × ω1.
Fix a family {Xs : s ∈ <ω2} of infinite subsets of ω such that Xs ⊇ Xt, and hence GXs

⊇∗ GXt
, whenever 

s ⊆ t, and Xs ∩Xt = ∅, and hence GXs
∩GXt

=∗ ∅, whenever s and t are incompatible. Using this we can 
fix α ∈ ω1 such that all exceptions in the previous sentence occur in Z × α.

So, the family {GXs
∩ Eα : s ∈ <ω2} satisfies the relations above without the modifier ‘modulo finite 

sets’. This implies that if n ∈ Z and β � α then there is at most one branch yn,β in the binary tree <ω2
such that 〈n, β〉 ∈ GXs

for all s ∈ yn,β .
Now, since 2ℵ0 = 2ℵ1 there is a branch, y, different from all yn,β . We can take an infinite set X such that 

X ⊆∗ Xs for all s ∈ y. This means of course that GX is uncountable and that GX ⊆∗ GXs
for all s ∈ y, 

and hence that there is β � α such that GX \ GXs
⊆ Z × β for all s. However, if 〈n, γ〉 ∈ GX and γ � β

then we should have both 〈n, γ〉 ∈
⋂

s∈y GXs
by the above and 〈n, γ〉 /∈

⋂
s∈y GXs

because y �= yn,γ . �
The methods from [2] and [3] can be used to establish the consistency of d = ℵ1 with the existence of an 

ideal with the properties (1) through (4) of I — let us call such an ideal countable-like.
Sacrificing completeness for brevity we shall only give a sketch of the proof of the following result, which 

is Theorem 4.5.1 from [2]. The sketch should be comprehensible to anyone familiar with the various terms 
employed, such as ωω-bounding, Grigorieff forcing etc. We refer the reader in search for definitions and more 
details to [2].

Theorem 4.2. It is consistent with ZFC that d = ℵ1 and there is countable-like ideal I on ω.

Proof. We start with a model of ZFC + GCH and take an increasing tower T = {Tα : α ∈ ω1} in P(ω) that 
generates a non-meager ideal and let A denote the almost disjoint family of differences {Tα+1\Tα : α ∈ ω1} — 
we write Aα = Tα+1 \ Tα. Because of the GCH we can arrange that {ω \ Tα : α ∈ ω1} generates a P-point, 
which more than suffices for our purposes.

We set up an iterated forcing construction, with countable supports, of proper ωω-bounding partial 
orders that will produce a model in which d = ℵ1 and the ideal I generated by T is countable-like. By the 
ωω-bounding property we get d = ℵ1 and the non-meagerness of I for free.

To turn A into a strong-Q-sequence we use guided Grigorieff forcing, as in [3]: given a choice F = 〈Fα :
α ∈ ω1〉, where each Fα is a subset of Aα, we let Gr(T , F ) be the partial order whose elements are functions 
of the form p : Tα → 2, with the property that p←(1) ∩ Aβ =∗ Fβ for all β � α. The ordering is by 
extension: p � q if p ⊇ q. This partial order is proper and ωω-bounding and if G is generic on Gr(T , F )
then X = (

⋃
G)←(1) is such that X ∩Aα =∗ Fα for all α. As indicated in [3], by appropriate bookkeeping 

one can set up an iteration that turns A into a strong-Q-sequence.
One can interleave this iteration with one that destroys all P-points; this establishes property (2) of 

countable-like ideals in a particularly strong way. For every ideal I that is dual to a non-meager P-filter 
one considers the ‘normal’ Grigorieff partial order Gr(I) associated to I, which consists of functions with 
domain in I and {0, 1} as codomain. The power Gr(I)ω is proper and ωω-bounding and forcing with it 
creates countably many sets that prevent the filter dual to I from being extended to a P-point, even in 
further extensions by proper ωω-bounding partial orders.

All bookkeeping can be arranged so that all potential choices for A and all potential non-meager P-filters 
can be dealt with. �
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The question arises naturally whether this argument can be adapted so as to include an automorphism of 
P(ω0)/fin that acts in the same way as our non-trivial automorphism ρ. On the surface this seems unlikely.

The construction has the tendency of going completely in the wrong direction as regards autohomeo-
morphisms of ω∗

0 . As explained in Chapter 5 of [2], if one has an autohomeomorphism ϕ that is not trivial 
on any element of the filter dual to I then the generic filter on Gr(I) destroys ϕ in the following sense: 
there is no possible value for ϕ(X∗), where X = (

⋃
G)←(1). The reason is that this value should satisfy 

ϕ(p←(1)∗) ⊆ ϕ(X∗) and ϕ(p←(0)∗) ∩ ϕ(X∗) = ∅ for all p ∈ G and a density argument shows that no such 
set exists in V [G].

Thus, if things go really wrong, one ends up with a model in which for every non-meager P-filter F and 
every autohomeomorphism there is a member of F on which the autohomeomorphism must be trivial. This 
would be in contradiction with the last sentence just before Remark 3.1, which says that our ρ is non-trivial 
on any set that contains uncountably many hαs.

In fact, Theorem 5.3.12 in [2] shows that by interleaving some extra partial orders in the iteration this 
ubiquity of triviality can actually be made to happen.
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