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0. Introduction

This paper contains two disparate results on H∗, the Čech–Stone remainder of the half line H = [0, ∞).
We prove that H∗ has a family of 2c many mutually non-homeomorphic subcontinua. This completes the 

proof of this fact begun in [4]; in that paper the first-named author showed that ¬CH, the negation of the 
Continuum Hypothesis, implies that such a family exists, consisting of decomposable continua.
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We prove that CH also implies the existence of a family of 2c many mutually nonhomeomorphic subcon-
tinua as well; in fact, we construct, in one fell swoop, two families: one consisting of indecomposable, the 
other of decomposable continua.

This suggests the obvious question whether one can construct from ZFC, or even ZFC + ¬CH, a family 
of 2c many mutually non-homeomorphic indecomposable subcontinua of H∗.

Our second result concerns continuous images of H∗. There are various parallels between H∗ and ω∗ as 
regards their continuous images. Some of these can be found in [7]: every continuum of weight ℵ1 or less 
is a continuous image of H∗ and the Continuum Hypothesis implies that the continuous images of H∗ are 
exactly the continua of weight c or less (parallel to Parovičenko’s results from [12] on continuous images 
of ω∗). That not all results carry over was shown in [8]: there is a continuum that is a continuous image 
of ω∗ (it is even separable) that is consistently not a continuous image of H∗. Also, the Open Coloring
Axiom implies that H∗ itself is not a continuous image of ω∗, see [6].

We present another parallel, this one of Bell’s result from [3] that, consistently, not every first-countable 
compact space is a continuous image of ω∗. We give a consistent example of a first-countable continuum that 
is neither a continuous image of ω∗ nor one of H∗. The interest in such examples stems from Arhangel’skĭı’s 
theorem in [1] that compact first-countable spaces have cardinality and hence weight at most c and thus 
are continuous images of ω∗ if one assumes CH.

1. Preliminaries

In this section we collect the necessary results on the subcontinua of H∗ that we shall need. We refer 
to [10] for the necessary proofs and further information.

1.1. An auxiliary space

A useful space to have is the product ω × I, which we denote by M. Its Čech–Stone compactification, 
βM, and its remainder, M∗, are very useful in the study of βH and H∗ because there are many continuous 
maps from both onto their respective counterparts.

The natural projection π : M → ω extends to a surjection βπ : βM → βω; because π is monotone the 
extension βπ is monotone as well. For u ∈ βω we denote the preimage βπ←(u) by Iu. For n ∈ ω we simply 
have In = {n} × I but if u ∈ ω∗ then Iu is a continuum that has a few properties that make it resemble I

somewhat.
It has two end points, 0u and 1u; these are obtained by intersecting Iu with the closures of ω × {0}

and ω × {1} respectively. The continuum Iu is irreducible between these end points and thus it is divided 
into layers by the following quasi-order: x � y iff every subcontinuum of Iu that contains 0u and y also 
contains x. These layers are the equivalence classes under the equivalence relation ‘x � y and y � x’ and 
they form an upper semicontinuous decomposition of Iu with an ordered continuum as its decomposition 
space.

Many of these layers are one-point sets, for instance: every sequence 〈xn : n ∈ ω〉 in I determines a 
point xu: the unique point of Iu that is in the closure of the set 

{
〈n, xn〉 : n ∈ ω

}
. Each such point is a 

cut point and the set of these is dense in Iu, and linearly ordered by �. If 〈xn : n ∈ ω〉 is an increasing 
sequence in Iu then its ‘supremum’ is a single layer that is non-trivial since it contains the accumulation 
points of 〈xn : n ∈ ω〉 and these form a set that is homeomorphic to ω∗, because H∗ is an F -space. Also, 
every layer is an indecomposable continuum; this fact will make some verifications in our construction 
relatively painless.
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1.2. Subcontinua of H∗

We now describe a general construction of subcontinua of H∗. To this end let 
〈
[an, bn] : n ∈ ω

〉
be 

a sequence of closed intervals in H such that bn = an+1 for all n and limn→∞ an = ∞. Take the map 
q : M → H defined by q(n, t) = an + t(bn − an) for all n and t. This map is almost everywhere one-to-one; 
the exceptions are at the end points: we always have q(n, 1) = q(n + 1, 0). This behavior persists when we 
take βq; this map is also almost injective, the exceptions are that βq(1u) = βq(0u+1) for all u, where u + 1
is the image of u under the extension of the shift map n �→ n + 1.

For every u ∈ ω∗ the restriction of βq to Iu is injective and hence an embedding. We shall denote the 
image by [au, bu] and refer to such a continuum as a standard subcontinuum of H∗.

These continua determine the structure of the other continua completely: every subcontinuum of H∗ is 
both the intersection and the union of families of standard subcontinua.

Some work is needed to establish the following fundamental facts:

Lemma 1.1 ([10, Theorem 5.8]). Every decomposable subcontinuum of H∗ is a non-trivial interval in some 
standard subcontinuum. �
Lemma 1.2 ([10, Theorem 5.9]). If K and L are subcontinua of H∗ that intersect and if one of these is 
indecomposable then K ⊆ L or L ⊆ K. �

In particular: if a standard subcontinuum K intersects an indecomposable subcontinuum L then either 
K ⊆ L and K is nowhere dense in L, or L is contained in a layer of K and hence nowhere dense in K.

Lemma 1.3 ([10, Theorem 5.10]). If K and L are subcontinua of H∗ such that K is a proper subset of L
and L is indecomposable then there is a standard subcontinuum M such that K ⊆ M ⊆ L. �
2. Getting the continua

In this section we describe a general construction of indecomposable continua in H∗; in the next section 
we show that we can actually find 2c many such continua.

We let Γ denote the collection of all sequences 
〈
[an, bn] : n ∈ ω

〉
of closed intervals in H with integer end 

points and such that bn = an+1 for all n.
As we have seen above, if A =

〈
[an, bn] : n ∈ ω

〉
is such a sequence then for every free ultrafilter, u, on ω

we obtain the standard subcontinuum [au, bu].
We can also associate another subcontinuum to A and an ultrafilter u, as follows. If q is the map from 

M to H associated to A as above then the restriction βq � M∗ maps M∗ onto H∗. Therefore there is an 
ultrafilter v on ω such that u ∈ [av, bv]; this continuum we shall denote by Au.

Thus each ultrafilter u determines a whole family of continua in H∗, to wit Su = {Au : A ∈ Γ}.
We shall find 2c many ultrafilters on ω and for each such ultrafilter u a chain Cu in Su. Each chain Cu

gives us an indecomposable continuum, Ku = cl
⋃

Cu, and our ulterior motive is to have all Ku be mutually 
non-homeomorphic.

To this end we shall find for each linear order 〈T, ≺〉 of cardinality ℵ1 an ultrafilter uT , in fact a P-point, 
such that T embeds in SuT

in a special way: there will be a family {At : t ∈ T} in Γ such that

(1) t ≺ s iff At
uT

is contained in a layer of As
uT

(2) every A ∈ Γ is equivalent to some At, in a manner to be specified presently.
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These two conditions will ensure that a homeomorphism between KuT
and KuS

will give rise to an isomor-
phism between final segments of T and S. Thus the proof will be finished once we exhibit 2c many linearly 
ordered sets without isomorphic final segments.

As mentioned before, the construction proceeds under the assumption of the Continuum Hypothesis.

2.1. Bad triple

The central notion will be that of a bad triple.2
A bad triple has three coordinates:

• a free filter base F on ω,
• a linear order 〈T, ≺〉, and
• a subset AT = {At : t ∈ T} of Γ.

These should satisfy the following properties, where, in the interest of readability we write A(t, n) for [atn, btn].

(1) If s ≺ t in T then there is F ∈ F such that for every k there is an l for which A(s, k) ∩ F ⊆ A(t, l)
(2) For every decreasing sequence 〈ti : i < l〉 in T , for every m ∈ ω and every F ∈ F there is a function 

ϕ : �lm → ω such that
(a) if ρ ∈ lm then ϕ(ρ) ∈ F ,
(b) if ρ ∈ <lm then i �→ ϕ(ρ � i) is increasing
(c) if k < l and ρ ∈ km then A

(
tk+1, ϕ(ρ � i)

)
⊆ A

(
tk, ϕ(ρ)

)
for all i < m.

If F is an ultrafilter then property (1) translates into As
F ⊆ At

F and property (2) implies that the inclusion 
is as described above: the (possibly partial) function ψ that satisfies ψ(k) = l iff A(s, k) ⊆ A(t, l) is finite to 
one, but its fibers have unbounded cardinality, even when restricted to an arbitrary element of F and this 
implies that As

F is a subset of a layer of At
F .

Condition (2) will also be seen to keep our recursive constructions alive. To be able to keep our formula-
tions readable we shall say that the function ϕ in this condition is m-dense for F and 〈ti : i < l〉, or for F

and {ti : i < l} (set rather than sequence). We shall abbreviate {ϕ(ρ) : ρ ∈ lm} as Imϕ and refer to it as 
the image of ϕ.

The following is a sketch of the construction. Let 〈T, ≺〉 be a linear order of cardinality ℵ1 and let 
〈tα : α ∈ ω1〉 be an enumeration of T . By transfinite recursion we construct a sequence 〈Fα : α ∈ ω1〉 of 
infinite subsets of ω and a map t �→ At from T to Γ such that

(1) Fβ ⊆∗ Fα whenever α < β

(2) 〈Fα, Tα, Aα〉 is a bad triple, where Fα = {Fβ : β < α}, Tα = {tβ : β < α}, and Aα = {Atβ : β < α}
(3) {Fα : α ∈ ω1} generates an ultrafilter on ω that by (1) will be a P -point.

For technical reasons we add a minimum and a maximum to T , if not already present.
We will formulate and prove a series of lemmas about bad triples that will facilitate such a construction; 

the standing assumptions in the lemmas will be

(1) F and T are countable, and F extends the cofinite filter,
(2) T has a minimum and a maximum, denoted 0 and 1 respectively, and
(3)

〈
[a0

n, b
0
n] : n ∈ ω

〉
=

〈
[n, n + 1] : n ∈ ω

〉
.

2 The word ‘good’ seems overused and, especially in the vernacular, ‘bad’ may carry a positive connotation
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To begin we show that at any time during our construction we can assume that F is a principal filter, 
or rather, the restriction of the cofinite filter to a single set; in the next lemma cofG denotes the filter 
{F : G ⊆∗ F}.

Lemma 2.1. If 〈F , T, AT 〉 is a bad triple then there is a single infinite G such that G ⊆∗ F for all F ∈ F
and such that 〈cofG, T, AT 〉 is a bad triple.

Proof. Let 〈Tn : n ∈ ω〉 be an increasing sequence of finite sets whose union is T and let 〈Fn : n ∈ ω〉 be a 
decreasing sequence in F such that for every F ∈ F there is an n such that Fn ⊆ F . Recursively let ϕm be 
m-dense for Fm and Tm and such that Imϕm is disjoint from Imϕi for i < m. Then G =

⋃
m∈ω Imϕm is 

as required. �
This lemma is used at limit steps of our construction, basically to make them look like successor steps. 

For the remainder of the paper we shall write 〈G, T, AT 〉 for 〈cofG, T, AT 〉.
At some steps in the construction the following technical fact will be useful.

Lemma 2.2. A triple 〈F, T, AT 〉 satisfies (2) in the definition of a bad triple if and only if for every (some) 
increasing sequence 〈mn : n ∈ ω〉 in ω and every (some) increasing sequence 〈Tn : n ∈ ω〉 finite subsets 
of T such that T =

⋃
n∈ω Tn there is a sequence 〈ϕn : n ∈ ω〉 of functions such that ϕn is mn-dense for F

and Tn, and max Imϕn < min Imϕn+1 for all n.

Proof. For the non-trivial implication we find the functions ϕn by recursion: ϕ0 exists by assumption and 
if ϕn is found then we let M = max Imϕn and we choose a function ϕ that is M + mn+1 + 1-dense for F
and Tn+1. By condition (2b) in the definition of a bad triple we have ϕ(M+1 +ρ) > M whenever ρ ∈ imn+1
for some i � |Tn+1| (here M + 1 + ρ denotes the sequence obtained by adding M + 1 to all values of ρ). 
Thus defining ϕn+1(ρ) = ϕ(M + 1 + ρ) gives us our next function. �

The next lemma ensures that we can make our final filter an ultrafilter.

Lemma 2.3. Let 〈F, T, AT 〉 be a bad triple and assume F = F0 ∪ F1; then at least one of 〈F0, T, AT 〉 and 
〈F1, T, AT 〉 is a bad triple.

Proof. We show by induction on l: if 〈ti : i < l〉 is decreasing and ϕ is 2m-dense for F and 〈ti : i < l〉 then 
ϕ induces an m-dense function for F0 or F1 and 〈ti : i < l〉.

If l = 1 then Imϕ is just a 2m-element subset of F and its intersection with one of F0 and F1 has at 
least m elements; the increasing enumeration of that intersection is m-dense.

In the step from l to l + 1 we let 〈ti : i � l〉 and a 2m-dense ϕ be given. For each j < 2m the function 
ϕj : �l2m → ω, defined by ϕj(ρ) = ϕ(j � ρ), is 2m-dense for F and 〈ti : 1 � i � l〉 and so induces an 
m-dense function ϕ′

j for Fεj and 〈ti : 1 � i � l〉, where εj ∈ {0, 1}. Take ε such that A = {j : εj = ε} has 
size at least m and define ϕ′ : �l+1m → ω by ‘ϕ′(〈j〉) is the jth element of A’ and ϕ′(j � ρ) = ϕ′

ϕ′(〈j〉)(ρ)
for ρ ∈ �lm.

Now enumerate T as 〈tn : n ∈ ω〉 and apply the above for each m to the pair 〈ti : i < m〉 and m. 
Whichever of F0 and F1 appears infinitely often in the conclusion is the set that we seek. �

Now we show how to extend the ordered set T by one element.

Lemma 2.4. Let 〈F, T, AT 〉 be a bad triple and let t∗ be a point not in T . Assume T ∪ {t∗} is ordered 
so that T retains its original order and 0 ≺ t∗ ≺ 1. Then there are G ⊆ F and At∗ ∈ Γ such that 〈
G, AT ∪ {At∗}, T ∪ {t∗}

〉
is a bad triple.
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Proof. We write T as an increasing union of finite sets Tm, with 0, 1 ∈ T0 and we construct G and At∗ as 
follows. We apply Lemma 2.2 to find a sequence 〈ϕm : m ∈ ω〉 such that ϕm is m2-dense for F and Tm, and 
max Imϕm < min Imϕm+1 for all m.

We fix m for the moment and let 〈ti : i < l〉 enumerate Tm in decreasing order and let i be such that 
ti+1 ≺ t∗ ≺ ti. Our task is to convert ϕm into an m-dense function, ψm, for our future G and Tm ∪ {t∗}. 
The idea is simple — we use level i + 1 in domϕm to create two levels in domψm — but the notation is a 
bit messy: we take the following subset of the domain of ϕm:

D = {ρ ∈ domϕm : (∀j ∈ dom ρ)(j �= i ⇒ ρ(j) < m)}

Using the m2 values for all ρ(i) we transform D into the tree �l+1m:

• if dom ρ � i then ρ does not change;
• if dom ρ = i + 1 then ρ = ρ′ � (km + j) for some ρ′ ∈ im and k, j < m; in this case ρ determines two 

nodes: ρ+ = ρ′ � k and ρ++ = ρ′ � k � j

• if i + 1 < dom ρ then ρ = ρ′ � (km + j) � σ for some ρ′ ∈ im, some k, j < m and some sequence σ; then 
ρ determines ρ+ = ρ′ � k � j � σ.

We define ψm : �l+1m → ω by

ψm(�) =

⎧⎨
⎩

ϕm(�) if dom � � i

ϕm(ρ) if � = ρ++ for some ρ ∈ i+1m

ϕm(ρ) if � = ρ+ for some ρ with dom ρ > i + 1

This leaves ψm(�) undefined in case dom � = i + 1, that is, if � = ρ � k for some ρ ∈ im and k < m, and it 
is here that we build and insert part of At∗ .

In words: for each ρ ∈ im we bundle the m2 intervals [ati+1
ϕm(ρ�j), b

ti+1
ϕm(ρ�j)] into groups of m consecutive 

ones and for each group take the smallest interval that surrounds its members.
In symbols: for each k < m the interval [ati+1

ϕm(ρ�(km)), b
ti+1
ϕm(ρ�((k+1)m−1))] will be a term of At∗ and its 

index will be the value of ψm at ρ � k.
In the end we set G =

⋃
m ψm and thus ensure that for every m the function ψm will be m-dense for G

and Tm ∪ {t∗}. �
We now turn to the task of avoiding having to add points to our linear order when we do not want to, 

that is, we want ensure that we can achieve property (2) (on page 95) of the embedding. It is here that we 
define the notion of equivalence, promised in that property.

We introduce some notation: let F ⊆ ω and let A, B ∈ Γ.
We say that A refines B modulo F , and we write A �F B, if for every term, [a, b], of A with [a, b] ∩F �= ∅

there is a term [c, d] of B such that [a, b] ∩ F ⊆ [c, d].
We say that A and B are equivalent modulo F , written A ≡F B, if for every n ∈ F there are terms [a, b]

of A and [c, d] of B such that n ∈ [a, b] ∩ F and [a, b] ∩ F = [c, d] ∩ F .

Lemma 2.5. Let 〈F, T, AT 〉 be a bad triple, let t ∈ T and A ∈ Γ. Then there is Ft ⊆ F such that 〈Ft, T, AT 〉
is a bad triple and A �Ft

At or At �Ft
A; in addition if t has a direct ≺-predecessor s then we can even 

achieve “A �Ft
As or At �Ft

A”.

Proof. Write T as the union of an increasing sequence 〈Tm : m ∈ ω〉 of finite sets such that 0, 1, t ∈ T0 (and 
also s ∈ T0 if present). Upon applying Lemmas 2.3 and 2.2 we may assume that F does not meet consecutive 
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intervals of At, and that we have a sequence 〈ϕm : m ∈ ω〉 of functions such that ϕm is (m +1)(m +2)-dense 
for F and Tm, and max Imϕm < min Imϕm+1 for all m. We also assume F =

⋃
m∈ω Imϕm.

Enumerate Tm in decreasing order as 〈tmi < lm〉, and for every m let im be the index of t. Abbreviate 
tmim as tm and tmim+1 as sm (so sm = s for all m if s is present).

We fix m for a moment and for every ρ ∈ im((m + 1)(m + 2)) we take a term [amρ , bmρ ] of A such that

Jm
ρ =

{
j < (m + 1)(m + 2) : A

(
sm, ϕm(ρ � j)

)
⊆ [amρ , bmρ ]

}

has maximum cardinality. Divide im((m + 1)(m + 2)) into two parts: Rm = {ρ : |Jm
ρ | � m} and its 

complement Sm.
The proof of Lemma 2.3 gives us a subfunction φm of ϕm � �im((m + 1)(m + 2)) whose domain is 

(m + 1)(m + 2)/2-branching and such that Xm = domφm ∩ im((m + 1)(m + 2)) is a subset of Rm or of Sm.
In case Xm ⊆ Rm we define a set Fm

t as follows:

Fm
t = F ∩

⋃{
A
(
sm, ϕ(ρ � j)

)
: ρ ∈ Xm and j ∈ Jm

ρ

}

We extend φm to a subfunction ψm of ϕm by adding

{
ρ ∈ domϕm : (∃σ ∈ Xm)(∃j ∈ Jm

σ )(σ � j ⊆ ρ)
}

to its domain and using the values of ϕm at those points. The resulting function is (more than) m-dense for 
Fm
t and Tm. Also, if n ∈ Fm

t then there are ρ ∈ Xm and j ∈ Jm
ρ such that n ∈ A

(
sm, ϕ(ρ � j)

)
⊆ A

(
t, ϕ(ρ)

)
and, by definition, Fm

t ∩A
(
t, ϕ(ρ)

)
⊆ [amρ , bmρ ]. This shows that if Fm

t were to contribute to Ft it would also 
witness At �Ft

A.
Thus, if the situation Xm ⊆ Rm occurs infinitely often then we can build an Ft such that At �Ft

A.
In the other case we get Xm ⊆ Sm infinitely (even cofinitely) often. We shall build an Ft that will satisfy 

A �Ft
At and even A �Ft

As if s is present.
Consider an m such that Xm ⊆ Sm and fix ρ ∈ Xm. For each term [a, b] of A the set {j : A

(
sm, ϕ(ρ � j)

)
⊆

[a, b]} has at most m − 1 elements; as [a, b] is an interval these are consecutive elements. This means that 
[a, b] can intersect at most m + 1 of these intervals: at most m − 1 in the interior and possibly two more 
that merely overlap at the ends. We use the intervals indexed by Xm and I = {(m + 2)(j + 1) : j < m} to 
define Fm

t :

Fm
t = F ∩

⋃{
A
(
sm, ϕ(ρ � i)

)
: ρ ∈ Xm and i ∈ I

}

the same formula as in the case ‘Xm ⊆ Rm’ with Jm
ρ replaced by I. Now if [a, b] is a term of A and 

n ∈ Fm
t ∩ [a, b] then there are one ρ ∈ Xm and one i ∈ I such that n ∈ A

(
sm, ϕ(ρ � i)

)
and the latter is 

also the only interval of that form that [a, b] intersects. It follows automatically that

Fm
t ∩ [a, b] ⊆ A

(
sm, ϕ(ρ � i)

)
⊆ A

(
t, ϕm(ρ)

)
.

Thus, if we let Ft be the union of these Fm
t then we achieve A �Ft

At and even A �Ft
As if s is present. �

Lemma 2.6. Let 〈F, T, AT 〉 be a bad triple and A ∈ Γ. Then there are G ⊆ F and an extension T ∗ of T by 
at most one point t∗ such that 〈G, T ∗, AT∗〉 is a bad triple and A ≡G At for some t ∈ T ∗.

Proof. We apply Lemma 2.5 countably many times and Lemma 2.1 once so that we can assume that for 
every t ∈ T there is a cofinite subset Ft of F such that A �Ft

At or At �Ft
A and even A �Ft

As or 
At �Ft

A if t has a direct ≺-predecessor s.
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We divide T into S0 = {t : At �Ft
A} and S1 = {t : A �Ft

At}. Note that 0 ∈ S0 by default.
We need to consider several cases.

Case 1: S0 has a maximum and S1 has a minimum. Note that by the condition on direct predecessors these 
must be identical, say t = maxS0 = minS1. Then one verifies that A ≡Ft

At.

Case 2: S1 is empty. In this case we have A1 �F A and we can thin out F to a set G such that A1 ≡G A; 
then 〈G, T, AT 〉 is a bad triple.

For the other cases we write T as the union of an increasing sequence 〈Tm : m ∈ ω〉 of finite sets such 
that 0, 1 ∈ T0; as before we take the decreasing enumeration 〈tmi : I < lm〉 of Tm. For each m we let im be 
such that tmim ∈ S1 and tmim+1 ∈ S0; we denote these two points by tm and sm respectively.

Furthermore we choose 〈ϕm : m ∈ ω〉 as in Lemma 2.2 so that ϕm is m-dense for F and Tm and such 
that Imϕm ⊆ Ftm ∩ Fsm .

Fix m for a moment. We know that Asm �Fsm
A �Ftm

Atm ; this implies that for every ρ ∈ imm and 
every j < m there is a term [a, b] of A such that

A
(
sm, ϕ(ρ � j)

)
∩ F ⊆ [a, b] ∩ F ⊆ A

(
tm, ϕ(ρ)

)
∩ F (*)

indeed, [a, b] is found by an application of Asm �Fsm
A and A

(
tm, ϕ(ρ)

)
is the only possible term of Atm

that can help witness A �Ftm
Atm .

We put Gm = F ∩
⋃

ρ A
(
sm, ϕ(ρ � 0)

)
, where ρ runs through imm. We can define two functions φm and 

ψm on �lm−1m, as follows.

(1) If |ρ| < im then φm(ρ) = ψm(ρ) = ϕm(ρ).
(2) If |ρ| = im then φm(ρ) = ϕm(ρ) and ψm(ρ) = ϕm(ρ � 0).
(3) If |ρ| > im, say ρ = � � σ, with |�| = im, then φm(ρ) = ψm(ρ) = ϕ(� � 0 � σ).

So, in φm we skip level im + 1 of the domain of ϕm and in ψm we skip level im. The effect is that φm is 
m-dense for Tm \ {sm} and Gm, whereas ψm is m-dense for Tm \ {tm} and Gm.

In addition we have made sure that Asm ≡Gm
A ≡Gm

Atm .
We let G =

⋃
m Gm and consider the remaining cases in turn.

Case 3: S0 has no maximum and S1 has a minimum, say s = minS1. In this case we know that sm = s

cofinitely often. If we drop the finitely many Gm for which sm �= s then we achieve A ≡G At. Moreover 
〈G, T, AT 〉 is a bad triple, as witnessed by the functions φm.

Case 4: S0 has a maximum and S1 has no minimum, say t = maxS0. In this case we know that tm = s

cofinitely often. If we drop the finitely many Gm for which s �= tm then we achieve As ≡G A. Moreover 
〈G, T, AT 〉 is a bad triple, as witnessed by the functions ψm.

Case 5: S0 has no maximum and S1 has no minimum. This case necessitates adding a new point, t∗, to T
and inserting it into the gap formed by S0 and S1 to form T ∗. We then redefine φm on level im so that 
its value at ρ becomes the index of the term of A that was chosen to satisfy inclusions (*). The new φm is 
m-dense for {t∗} ∪ Tm \ {sm, tm} and Gm; this establishes that 〈G, T ∗, AT∗〉 is a bad triple. �

Repeated application of these lemmas will prove the following theorem, where we extend the notion of 
equivalence to (ultra)filters: if p is an (ultra)filter on ω then A ≡p B means that A ≡F B for some F ∈ p.

Theorem 2.7 (CH). Let T be a linear order of cardinality at most ℵ1 that has a maximum and no 〈ω, ω〉-gaps. 
Then one can find a subcollection AT = {At : t ∈ T} of Γ and a P-point ultrafilter p on ω such that
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(1) 〈p, T, AT 〉 is a bad triple
(2) for all A ∈ Γ, there is a t ∈ T such that A ≡p At. �
3. Finding many different continua

In this section we shall use Theorem 2.7 (and hence the Continuum Hypothesis) to find 2c many different 
subcontinua of H∗.

We shall apply the theorem to the following type of linearly ordered sets

(1) cardinality at most ℵ1
(2) no 〈ω, ω〉-gaps
(3) cofinality ℵ0 (in particular: no maximum)

In keeping with our use of the vernacular we shall call this a mean linear order.

3.1. One continuum

Let T be a mean linear order. We order T+ = T ∪{T} ordered by stipulating that t ≺ T for all t ∈ T . We 
apply Theorem 2.7 to T+ to obtain a family AT = {At

p : t ∈ T+} and a P-point p satisfying the conditions 
of that theorem. We define

KT = cl
⋃
t∈T

At
p,

as announced in the beginning of Section 2.
We list some properties of KT and the individual continua At

p.

Lemma 3.1. For every t �= minT there is a layer Lt
p of At

p such that 
⋃

s≺t A
s
p ⊆ Lt

p.

Proof. Lemma 6.2 of [10] establishes that As
p is contained in a layer of At

p whenever s ≺ t; because AT is 
a chain this layer is independent of s. We need the assumption t �= minT to ensure that we actually have 
points below t. �
Lemma 3.2. Every At

p is nowhere dense in KT and 
⋃

t∈T Lt
p =

⋃
t∈T At

p.

Proof. Given t ∈ T there is s ∈ T such that t ≺ s. Then At
p ⊆ Ls, which establishes the equality of the two 

unions.
Because Ls is nowhere dense in As

p this also implies that At
p is nowhere dense in KT . �

Lemma 3.3. KT is indecomposable.

Proof. The proof is implicit in [14] and [10] as part of a construction of an indecomposable subcontinuum 
of H∗ called K9 in the latter paper.

Let L be a proper subcontinuum of KT . Note that because each Lt
p is indecomposable we know that 

Lt
p ⊆ L or L ⊆ Lt

p for all t such that L ∩ Lt
p is nonempty. Since it is impossible that Lt

p ⊆ L for all t
(otherwise L = KT ) it follows that L ∩

⋃
t∈T Lt

p = ∅ or L ⊆ Lt
p for some t. In either case L is nowhere dense 

in KT . �
Lemma 3.4. Every At

p is a P-set in H∗ as is every Lt
p, for t �= minT .
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Proof. The preimage of At
p under the parametrizing map q : M∗ → H∗ consists of Iv, the point 1v−1 and 

the point 0v+1, where v is such that At
p = [atv, btv]. This makes the preimage a P-set, as π is closed this 

implies that At
p is a P-set as well.

It suffices to show that Lt
p is not a countable cofinality layer in At

p if t �= minT . If Lt
p were such a layer 

then one of the open intervals with Lt
p as its end layer, call it I, would be an Fσ-set such that I ∩ Lt

p = ∅
and Lt

p ⊆ cl I. Now let s ≺ t; then As
p is a P-set and As

p ∩ I = ∅. It follows that As
p ∩ cl I = ∅ as well, which 

contradicts Lt
p ⊆ cl I. �

3.2. Consequences of homeomorphy

Let T and S be two mean linear orders. We assume we have families AT and AS and P-points p and 
q respectively as in Theorem 2.7. We write FT =

⋃
t∈T At

p and FS =
⋃

s∈S As
q and let KT = clFT and 

KS = clFS . We retain the notations Lt
p and Lt

q respectively for the layers from Lemma 3.1. We assume 
that KT and KS are homeomorphic and let f : KT → KS be a homeomorphism.

Lemma 3.5. f [FT ] = FS.

Proof. Let t ∈ T . Because the P-set f [At
p] is in the closure of the Fσ-set FS it must actually intersect that 

set. Thus there is an s ∈ S such that f [At
p] ∩ As

q �= ∅ and hence f [At
p] ∩ Lr

q �= ∅ whenever s ≺ r in S. It 
follows that f [At

p] ⊆ Lr
q or Lr

q ⊆ f [At
p] for all r � s and because f [At

p] is nowhere dense in KS we must 
have f [At

p] ⊆ Lr
q for a final segment of r in S.

This shows that f [FT ] ⊆ FS and, using f−1 instead of f , we can also deduce that FS ⊆ f [FT ]. Thus we 
find that FT is mapped onto FS by f . �

Our aim is now to show that T and S have isomorphic final segments.
Let T ′ = {t ∈ T : (∃s ∈ S)(As

q ⊆ f [Lt
p])} and, symmetrically, let S′ = {s ∈ S : (∃t ∈ T )(f [At

p] ⊆ Ls
q)}. 

We shall show that T ′ and S′ are isomorphic by showing that f induces an isomorphism between the families 
{Lt

p : t ∈ T ′} and {Ls
q : s ∈ S′} (ordered by inclusion).

Let t ∈ T ′ and consider f [At
p]; this is a decomposable continuum and hence it is an interval of some 

standard subcontinuum. We shall find A ∈ Γ such that f [At
p] is in fact an interval of Aq. To this end let 〈

[cn, dn] : n ∈ ω
〉

be a sequence of closed intervals with dn = cn+1 for all n and let r ∈ ω∗ be such that 
f [At

p] is an interval of [cr, dr]. For every n let in = �cn� and jn = �dn�.
There is a member R of r such that if n < m in R then jn < im and in this case we can assume that 〈

[in, jn] : n ∈ R
〉

is a subsequence of some A ∈ Γ. It is clear that [cr, dr] ⊆ [ir, jr] and it is also true that q ∈
f [At

p] ⊆ [cr, dr]; together these statements imply that Aq = [ir, jr], so that f [At
p] is indeed an interval of Aq.

Now let st ∈ S be such that A ≡q Ast and fix some s ∈ S such that As
q ⊆ f [Lt

p]. We claim that s ≺ st. 
Indeed, if st � s then we find that Ast

q ⊆ As
q ⊆ f [Lt

p] and hence that Ast
q is nowhere dense in f [At

p] and 
hence in Aq, which contradicts A ≡q Ast . Thus we find that As

q ⊆ Lst
q and hence that f [Lt

p] ∩ Lst
q �= ∅. But 

f [Lt
p] is a layer of f [At

p] and hence of Aq ∪Ast
q , as is Lst

q of course. But then we must have f [Lt
p] = Lst

q .
Since Lt1

p is nowhere dense in Lt2
p , whenever t1 ≺ t2 in T , the map t �→ st from T ′ to S′ is strictly 

increasing; that it is surjective follows by interchanging S′ and T ′ and considering f−1.
This shows that T ′ and S′ are isomorphic.

3.3. Many ordered sets

We define a family of 2ℵ1 many linear orders of countable cofinality and without isomorphic final segments.
For a set X of countable limit ordinals we define a linear order LX by inserting upside–down copies of ω

into ω1, one between α and α + 1 for every α ∈ X. More formally we let
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LX = {〈α,m〉 ∈ ω1 × ω : α /∈ X → m = 0}

ordered by 〈α, m〉 ≺ 〈β, n〉 if 1) α ∈ β, or 2) α = β and m = 0 < n, or 3) α = β and m > n > 0.

Proposition 3.6. LX and LY are isomorphic iff X = Y .

Proof. Let f : LX → LY be an isomorphism. We show by induction that f(〈α, 0〉) = 〈α, 0〉 for every limit 
ordinal α as well as α ∈ X iff α ∈ Y .

In both LX and LY the point 〈ω, 0〉 has ω × {0} as its set of predecessors and so f(〈ω, 0〉) = 〈ω, 0〉. 
Assume α is a limit and that f(〈β, 0〉) = 〈β, 0〉 for all limits below α. If α is a limit of limits then in both 
ordered sets we have 〈α, 0〉 = sup{〈β, 0〉 : β ∈ α and β is a limit} and hence f(〈α, 0〉) = 〈α, 0〉.

Next assume α = β + ω for a limit β. If β /∈ X then 〈β + 1, 0〉 is the direct successor in LX of 〈β, 0〉, 
hence 〈β, 0〉 must have a direct successor in LY as well. From this it follows that β /∈ Y and f(〈β + n, 0〉) =
〈β + n, 0〉 for all n ∈ ω and hence also f(〈α, 0〉) = 〈α, 0〉.

If β ∈ X then the interval 
(
〈β, 0〉, 〈α, 0〉

)
has the same order type as Z, the set of integers. Now the interval (

〈β, 0〉, 〈β, 1〉
]

is infinite and every point in it has a direct predecessor. This means that f(〈β, 1〉) ≺ 〈α, 0〉
and hence that 〈β, 0〉 does not have a direct successor in LY and hence that β ∈ Y . It follows that f maps the 
interval 

(
〈β, 0〉, 〈α, 0〉

)
isomorphically onto the corresponding interval of LY and that f(〈α, 0〉) = 〈α, 0〉. �

From LX we define TX to be the ordered sum of ω copies of LX :

TX = ω × LX

ordered lexicographically. Now note that the points 
〈
n, 〈0, 0〉

〉
are the only ones in TX whose sets of prede-

cessors have cofinality ℵ1.
Thus, if f is an isomorphism between final segments of some TX and TY then there an isomorphism g

between final segments of ω such that f(〈n, 〈0, 0〉〉) =
〈
g(n), 〈0, 0〉

〉
for all n in the final segment on the 

TX -side. For each such n the map f then maps {n} × LX isomorphically onto {g(n)} × LY . It follows that 
X = Y .

This then provides us with our family of 2ℵ1 many linear orders, indexed by the family of sets of countable 
limit ordinals.

This proves the following theorem and with it the existence of a family of 2c many mutually nonhomeo-
morphic subcontinua of H∗.

Theorem 3.7 (CH). There is a family of 2c mean linear orders such that no two members have isomorphic 
final segments. �
3.4. Summary: two families of continua

The combination of Subsection 3.2 and Theorem 3.7 tells us that {KTX
: X a set of countable limit 

ordinals} is a family of 2c many indecomposable subcontinua of H∗ that are mutually non-homeomorphic.
To get a family of 2c many decomposable continua use Lemma 1.3 to deduce that in our construction 

the continuum KT is actually a layer of the ‘top continuum’ AT+ . Indeed, KT is a subset of some layer L

of AT+ ; if it were a proper subset then there would be a standard subcontinuum M with KT ⊆ M ⊆ L. As 
in Subsection 3.2 we could then find A ∈ Γ such that M is an interval of A; yet there would be no t ∈ T+

such that A ≡p At.
Our second family is now obtained by taking for every set X of countable limit ordinals the interval 

[aX , KTX
] of the standard subcontinuum AT+

X
, where aX is the initial point of AT+

X
as described in Subsec-

tion 1.2. These decomposable continua are mutually non-homeomorphic because a homeomorphism between 
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[aX , KTX
] and [aY , KTY

] will have to map aX to aY (as these are the unique end points) and KTX
onto KTY

; 
the latter is not possible if X �= Y .

Remark 3.1. The family in [4] consists of standard subcontinua. By one of the results in [5] CH implies that 
all standard subcontinua are homeomorphic. Thus there is a striking difference between the effects of CH
and ¬CH on the structure of family of standard subcontinua.

Our result shows that under CH each standard subcontinuum has a rich variety of layers and intervals. 
We leave as an open question how rich this variety is in ZFC alone.

4. A first-countable continuum

As mentioned in the introduction CH implies that the continuous images of H∗ are precisely the continua 
of weight c or less — in particular every first-countable continuum is such an image. In this section we show 
that in the absence of CH there may be a first-countable continuum that is neither an image of ω∗ nor of H∗.

4.1. Bell’s graph

A major ingredient in our construction is Bell’s graph, constructed in [2]. It is a graph on the ordinal ω2, 
represented by a symmetric subset E of (ω2)2. The crucial property of this graph is that there is no map 
ϕ : ω2 → P(ω) that represents this graph, where ϕ represents E if 〈α, β〉 ∈ E if and only if ϕ(α) ∩ ϕ(β) is 
infinite.

Bell’s graph exists in any forcing extension in which ℵ2 Cohen reals are added; for the reader’s convenience 
we shall, in Subsection 4.5 below, describe the construction of E and adapt Bell’s proof so that it applies 
to continuous maps defined on H∗. The proof shows that a similar graph also exists in the extension by 
ℵ2 random reals.

4.2. Building CE

Our starting point is a connected version of the Alexandroff double of the unit interval, devised by 
Saalfrank [13]. We topologize the unit square as follows.

(1) A local base at points of the form 〈x, 0〉 consists of the sets

U(x, 0, n) = (x− 2−n, x + 2−n) × [0, 1] \ {x} × [2−n, 1]

(2) A local base at points of the form 〈x, y〉, with y > 0 consists of the sets

U(x, y, n) = {x} × (y − 2−n, y + 2−n)

We call the resulting space the connected comb and denote it by C. It is straightforward to verify that C is 
compact, Hausdorff and connected; it is first-countable by definition.

For each x ∈ [0, 1] and positive a we define the following cross-shaped closed subset of C2:

Dx,a =
(
{x} × [a, 1] × C

)
∪
(
C × {x} × [a, 1]

)

We note the following two properties of the sets Dx,a

(1) if a < b then Dx,b is in the interior of Dx,a, and
(2) if x �= y then Dx,a∩Dy,a is the union of two squares: {x} ×[a, 1] ×{y} ×[a, 1] and {y} ×[a, 1] ×{x} ×[a, 1].
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Next take any ℵ2-sized subset of [0, 1] and index it (faithfully) as {xα : α < ω2}. We use this indexing 
to identify E with the subset {〈xα, xβ〉 : 〈α, β〉 ∈ E} of the unit square. We remove from C2 the following 
open set:

⋃
〈x,y〉/∈E

((
{x} × (0, 1] × {y} × (0, 1]

)
∪
(
{y} × (0, 1] × {x} × (0, 1]

))

The resulting compact space we denote by CE. Observe that the intersections Dxα,a ∩ CE represent E in 
the sense that Dxα,a ∩Dxβ ,a ∩ CE is nonempty if and only if 〈α, β〉 ∈ E. We write DE

x,a = Dx,a ∩ CE .

4.3. CE is (arcwise) connected

To begin: the square S of the base line of C is a subset of CE and homeomorphic to the unit square so 
that it is (arcwise) connected.

Let 〈x, a, y, b〉 be a point of CE not in S. If, say, a = 0 then 
{
〈x, 0〉

}
×

(
{y} × [0, b]

)
is an arc in CE

that connects 〈x, 0, y, b〉 to the point 〈x, 0, y, 0〉 in S. If a, b > 0 then 〈x, y〉 ∈ E, so the whole square 
{x} × [0, 1] × {y} × [0, 1] is in CE and it provides us with an arc in CE from 〈x, a, y, b〉 to 〈x, 0, y, 0〉.

We find that CE is a first-countable continuum.

4.4. CE is not an H∗-image

Assume h : H∗ → CE is a continuous surjection and consider, for each α, the sets DE
xα, 34

and DE
xα, 12

.
Using standard properties of βH, see [10, Proposition 3.2], we find for each α a sequence 

〈
(aα,n, bα,n) :

n ∈ ω
〉

of open intervals with rational endpoints, and with bα,n < aα,n+1 for all n, such that h←[DE
xα, 34

] ⊆
ExOα ∩H∗ ⊆ h←[DE

xα, 12
], where Oα =

⋃
n(aα,n, bα,n) and ExOα = βH \ cl(H \Oα).

Because the intersections of the sets DE
xα,a represent E the intersections of the Oα will do this as well: 

the conditions ‘Oα ∩Oβ is unbounded’ and ‘〈α, β〉 ∈ E’ are equivalent.
In the next subsection we show that for (many) 〈α, β〉 this equivalence does not hold and that therefore 

CE is not a continuous image of H∗.
Note also that our continuum is not an ω∗-image either: if g : ω∗ → CE were continuous and onto we could 

use clopen subsets of ω∗ and their representing infinite subsets of ω to contradict the unrepresentability 
property of E.

4.5. Building the graph

We follow the argument from [2] and we rely on Kunen’s book [11, Chapter VII] for basic facts on 
forcing. We let L = {〈α, β〉 ∈ (ω2)2 : α � β} and we force with the partial order Fn(L, 2) of finite 
partial functions with domain in L and range in {0, 1}. If G is a generic filter on Fn(L, 2) then we let 
E = {〈α, β〉 :

⋃
G(α, β) = 1 or 

⋃
G(β, α) = 1}.

To show that E is as required we take a nice name Ḟ for a function, F , from ω2 to (Q2)ω that represents 
a choice of open sets α �→ Oα as above in that F (α) =

〈
〈aα,n, bα,n〉 : n ∈ ω

〉
for all α. As a nice name Ḟ

is a subset of ω2 × ω × Q2 × Fn(L, 2), where for each point 〈α, n, a, b〉 the set {p : 〈α, n, a, b, p〉 ∈ Ḟ} is a 
maximal antichain in the set of conditions that forces the nth term of Ḟ (α) to be 〈a, b〉.

For each α we let Iα be the set of ordinals that occur in the domains of the conditions that appear as 
a fifth coordinate in the elements of Ḟ with first coordinate α. The sets Iα are countable, by the ccc of 
Fn(L, 2). We may therefore apply the Free-Set Lemma, see [9, Corollary 44.2], and find a subset A of ω2 of 
cardinality ℵ2 such that α /∈ Iβ and β /∈ Iα whenever α, β ∈ A and α �= β.
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Let p ∈ Fn(L, 2) be arbitrary and take α and β in A with α < β and such that α > η whenever η occurs 
in p. Consider the condition q = p ∪

{
〈α, β, 1〉

}
. If q forces Oα ∩ Oβ to be bounded in [0, ∞) then we are 

done: q forces that the equivalence fails at 〈α, β〉.
If q does not force the intersection to be bounded we can extend q to a condition r that forces Oα ∩Oβ

to be unbounded. We define an automorphism h of Fn(L, 2) by changing the value of the conditions only 
at 〈α, β〉: from 0 to 1 and vice versa. The condition p as well as the values Ḟ (α) and Ḟ (β) are invariant 
under h. It follows that h(r) extends p and

h(r) �
⋃
Ġ(α, β) = 0 and Oα ∩Oβ is unbounded

so again the equivalence is forced to fail at 〈α, β〉.

Remark 4.1. The argument above goes through almost verbatim to show that Bell’s graph can also be 
obtained adding ℵ2 random reals. When forcing with the random real algebra one needs only consider 
conditions that belong to the σ-algebra generated by the clopen sets of the product {0, 1}L; these all have 
countable supports so that, again by the ccc, one can define the sets Iα as before. The rest of the argument 
remains virtually unchanged.

Remark 4.2. Bell’s original example from [2] was not easily made connected. One obtains an essentially 
equivalent example by taking the square of the Alexandroff double of the unit interval (the subspace 

{
〈x, i〉 :

x ∈ [0, 1], i ∈ {0, 1}
}

of C) and removing the points 
〈
〈x, 1〉, 〈y, 1〉

〉
with 〈x, y〉 /∈ E.
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