On subcontinua and continuous images of $\beta \mathbb{R} \backslash \mathbb{R}$

CrossMark

Alan Dow ${ }^{\mathrm{a}, 1}$, Klaas Pieter Hart ${ }^{\mathrm{b}, *}$
a Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001, United States
${ }^{\mathrm{b}}$ Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus 5031, 2600 GA, Delft, The Netherlands

A R T I C L E I N F O

Article history:

Received 24 January 2014
Received in revised form 4 March
2015
Available online 4 October 2015
Dedicated with great fondness to the memory of Mary Ellen Rudin

MSC:

primary 54 F 15
secondary 03E50, 03E65, 54A35,
54D35, 54D40, 54G20

Keywords:
Half line
Continuum
Subcontinuum
Continuum Hypothesis
Čech-Stone remainder \mathbb{H}^{*}
Continuous image
Cohen reals

Abstract

We prove that the Cech-Stone remainder of the real line has a family of $2^{\mathfrak{c}}$ mutually non-homeomorphic subcontinua. We also exhibit a consistent example of a first-countable continuum that is not a continuous image of \mathbb{H}^{*}.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

This paper contains two disparate results on \mathbb{H}^{*}, the Čech-Stone remainder of the half line $\mathbb{H}=[0, \infty)$.
We prove that \mathbb{H}^{*} has a family of $2^{\mathfrak{c}}$ many mutually non-homeomorphic subcontinua. This completes the proof of this fact begun in [4]; in that paper the first-named author showed that $\neg \mathrm{CH}$, the negation of the Continuum Hypothesis, implies that such a family exists, consisting of decomposable continua.

[^0]We prove that CH also implies the existence of a family of $2^{\mathfrak{c}}$ many mutually nonhomeomorphic subcontinua as well; in fact, we construct, in one fell swoop, two families: one consisting of indecomposable, the other of decomposable continua.

This suggests the obvious question whether one can construct from ZFC, or even ZFC $+\neg \mathrm{CH}$, a family of $2^{\mathfrak{c}}$ many mutually non-homeomorphic indecomposable subcontinua of \mathbb{H}^{*}.

Our second result concerns continuous images of \mathbb{H}^{*}. There are various parallels between \mathbb{H}^{*} and ω^{*} as regards their continuous images. Some of these can be found in [7]: every continuum of weight \aleph_{1} or less is a continuous image of \mathbb{H}^{*} and the Continuum Hypothesis implies that the continuous images of \mathbb{H}^{*} are exactly the continua of weight \mathfrak{c} or less (parallel to Parovičenko's results from [12] on continuous images of ω^{*}). That not all results carry over was shown in [8]: there is a continuum that is a continuous image of ω^{*} (it is even separable) that is consistently not a continuous image of \mathbb{H}^{*}. Also, the Open Coloring Axiom implies that \mathbb{H}^{*} itself is not a continuous image of ω^{*}, see [6].

We present another parallel, this one of Bell's result from [3] that, consistently, not every first-countable compact space is a continuous image of ω^{*}. We give a consistent example of a first-countable continuum that is neither a continuous image of ω^{*} nor one of \mathbb{H}^{*}. The interest in such examples stems from Arhangel'skiu's theorem in [1] that compact first-countable spaces have cardinality and hence weight at most \mathfrak{c} and thus are continuous images of ω^{*} if one assumes CH .

1. Preliminaries

In this section we collect the necessary results on the subcontinua of \mathbb{H}^{*} that we shall need. We refer to [10] for the necessary proofs and further information.

1.1. An auxiliary space

A useful space to have is the product $\omega \times \mathbb{I}$, which we denote by \mathbb{M}. Its Čech-Stone compactification, $\beta \mathbb{M}$, and its remainder, \mathbb{M}^{*}, are very useful in the study of $\beta \mathbb{H}$ and \mathbb{H}^{*} because there are many continuous maps from both onto their respective counterparts.

The natural projection $\pi: \mathbb{M} \rightarrow \omega$ extends to a surjection $\beta \pi: \beta \mathbb{M} \rightarrow \beta \omega$; because π is monotone the extension $\beta \pi$ is monotone as well. For $u \in \beta \omega$ we denote the preimage $\beta \pi \leftarrow(u)$ by \mathbb{I}_{u}. For $n \in \omega$ we simply have $\mathbb{I}_{n}=\{n\} \times \mathbb{I}$ but if $u \in \omega^{*}$ then \mathbb{I}_{u} is a continuum that has a few properties that make it resemble \mathbb{I} somewhat.

It has two end points, 0_{u} and 1_{u}; these are obtained by intersecting \mathbb{I}_{u} with the closures of $\omega \times\{0\}$ and $\omega \times\{1\}$ respectively. The continuum \mathbb{I}_{u} is irreducible between these end points and thus it is divided into layers by the following quasi-order: $x \preccurlyeq y$ iff every subcontinuum of \mathbb{I}_{u} that contains 0_{u} and y also contains x. These layers are the equivalence classes under the equivalence relation ' $x \preccurlyeq y$ and $y \preccurlyeq x$ ' and they form an upper semicontinuous decomposition of \mathbb{I}_{u} with an ordered continuum as its decomposition space.

Many of these layers are one-point sets, for instance: every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in \mathbb{I} determines a point x_{u} : the unique point of \mathbb{I}_{u} that is in the closure of the set $\left\{\left\langle n, x_{n}\right\rangle: n \in \omega\right\}$. Each such point is a cut point and the set of these is dense in \mathbb{I}_{u}, and linearly ordered by \preccurlyeq. If $\left\langle x_{n}: n \in \omega\right\rangle$ is an increasing sequence in \mathbb{I}_{u} then its 'supremum' is a single layer that is non-trivial since it contains the accumulation points of $\left\langle x_{n}: n \in \omega\right\rangle$ and these form a set that is homeomorphic to ω^{*}, because \mathbb{H}^{*} is an F-space. Also, every layer is an indecomposable continuum; this fact will make some verifications in our construction relatively painless.

1.2. Subcontinua of \mathbb{H}^{*}

We now describe a general construction of subcontinua of \mathbb{H}^{*}. To this end let $\left\langle\left[a_{n}, b_{n}\right]: n \in \omega\right\rangle$ be a sequence of closed intervals in \mathbb{H} such that $b_{n}=a_{n+1}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=\infty$. Take the map $q: \mathbb{M} \rightarrow \mathbb{H}$ defined by $q(n, t)=a_{n}+t\left(b_{n}-a_{n}\right)$ for all n and t. This map is almost everywhere one-to-one; the exceptions are at the end points: we always have $q(n, 1)=q(n+1,0)$. This behavior persists when we take βq; this map is also almost injective, the exceptions are that $\beta q\left(1_{u}\right)=\beta q\left(0_{u+1}\right)$ for all u, where $u+1$ is the image of u under the extension of the shift map $n \mapsto n+1$.

For every $u \in \omega^{*}$ the restriction of βq to \mathbb{I}_{u} is injective and hence an embedding. We shall denote the image by $\left[a_{u}, b_{u}\right]$ and refer to such a continuum as a standard subcontinuum of \mathbb{H}^{*}.

These continua determine the structure of the other continua completely: every subcontinuum of \mathbb{H}^{*} is both the intersection and the union of families of standard subcontinua.

Some work is needed to establish the following fundamental facts:

Lemma 1.1 ([10, Theorem 5.8]). Every decomposable subcontinuum of \mathbb{H}^{*} is a non-trivial interval in some standard subcontinuum.

Lemma 1.2 ([10, Theorem 5.9]). If K and L are subcontinua of \mathbb{H}^{*} that intersect and if one of these is indecomposable then $K \subseteq L$ or $L \subseteq K$.

In particular: if a standard subcontinuum K intersects an indecomposable subcontinuum L then either $K \subseteq L$ and K is nowhere dense in L, or L is contained in a layer of K and hence nowhere dense in K.

Lemma 1.3 ([10, Theorem 5.10]). If K and L are subcontinua of \mathbb{H}^{*} such that K is a proper subset of L and L is indecomposable then there is a standard subcontinuum M such that $K \subseteq M \subseteq L$.

2. Getting the continua

In this section we describe a general construction of indecomposable continua in \mathbb{H}^{*}; in the next section we show that we can actually find $2^{\mathfrak{c}}$ many such continua.

We let Γ denote the collection of all sequences $\left\langle\left[a_{n}, b_{n}\right]: n \in \omega\right\rangle$ of closed intervals in \mathbb{H} with integer end points and such that $b_{n}=a_{n+1}$ for all n.

As we have seen above, if $A=\left\langle\left[a_{n}, b_{n}\right]: n \in \omega\right\rangle$ is such a sequence then for every free ultrafilter, u, on ω we obtain the standard subcontinuum $\left[a_{u}, b_{u}\right]$.

We can also associate another subcontinuum to A and an ultrafilter u, as follows. If q is the map from \mathbb{M} to \mathbb{H} associated to A as above then the restriction $\beta q \upharpoonright \mathbb{M}^{*}$ maps \mathbb{M}^{*} onto \mathbb{H}^{*}. Therefore there is an ultrafilter v on ω such that $u \in\left[a_{v}, b_{v}\right]$; this continuum we shall denote by A_{u}.

Thus each ultrafilter u determines a whole family of continua in \mathbb{H}^{*}, to wit $\mathcal{S}_{u}=\left\{A_{u}: A \in \Gamma\right\}$.
We shall find $2^{\mathfrak{c}}$ many ultrafilters on ω and for each such ultrafilter u a chain \mathcal{C}_{u} in \mathcal{S}_{u}. Each chain \mathcal{C}_{u} gives us an indecomposable continuum, $K_{u}=\operatorname{cl} \bigcup \mathcal{C}_{u}$, and our ulterior motive is to have all K_{u} be mutually non-homeomorphic.

To this end we shall find for each linear order $\langle T, \prec\rangle$ of cardinality \aleph_{1} an ultrafilter u_{T}, in fact a P-point, such that T embeds in $\mathcal{S}_{u_{T}}$ in a special way: there will be a family $\left\{A^{t}: t \in T\right\}$ in Γ such that
(1) $t \prec s$ iff $A_{u_{T}}^{t}$ is contained in a layer of $A_{u_{T}}^{s}$
(2) every $A \in \Gamma$ is equivalent to some A^{t}, in a manner to be specified presently.

These two conditions will ensure that a homeomorphism between $K_{u_{T}}$ and $K_{u_{S}}$ will give rise to an isomorphism between final segments of T and S. Thus the proof will be finished once we exhibit $2^{\text {c }}$ many linearly ordered sets without isomorphic final segments.

As mentioned before, the construction proceeds under the assumption of the Continuum Hypothesis.

2.1. Bad triple

The central notion will be that of a bad triple. ${ }^{2}$
A bad triple has three coordinates:

- a free filter base \mathcal{F} on ω,
- a linear order $\langle T, \prec\rangle$, and
- a subset $\mathcal{A}_{T}=\left\{A^{t}: t \in T\right\}$ of Γ.

These should satisfy the following properties, where, in the interest of readability we write $A(t, n)$ for $\left[a_{n}^{t}, b_{n}^{t}\right]$.
(1) If $s \prec t$ in T then there is $F \in \mathcal{F}$ such that for every k there is an l for which $A(s, k) \cap F \subseteq A(t, l)$
(2) For every decreasing sequence $\left\langle t_{i}: i<l\right\rangle$ in T, for every $m \in \omega$ and every $F \in \mathcal{F}$ there is a function $\varphi: \leqslant l m \rightarrow \omega$ such that
(a) if $\rho \in{ }^{l} m$ then $\varphi(\rho) \in F$,
(b) if $\rho \in{ }^{<l} m$ then $i \mapsto \varphi\left(\rho^{\frown} i\right)$ is increasing
(c) if $k<l$ and $\rho \in{ }^{k} m$ then $A\left(t_{k+1}, \varphi(\rho \frown i)\right) \subseteq A\left(t_{k}, \varphi(\rho)\right)$ for all $i<m$.

If \mathcal{F} is an ultrafilter then property (1) translates into $A_{\mathcal{F}}^{s} \subseteq A_{\mathcal{F}}^{t}$ and property (2) implies that the inclusion is as described above: the (possibly partial) function ψ that satisfies $\psi(k)=l$ iff $A(s, k) \subseteq A(t, l)$ is finite to one, but its fibers have unbounded cardinality, even when restricted to an arbitrary element of \mathcal{F} and this implies that $A_{\mathcal{F}}^{s}$ is a subset of a layer of $A_{\mathcal{F}}^{t}$.

Condition (2) will also be seen to keep our recursive constructions alive. To be able to keep our formulations readable we shall say that the function φ in this condition is m-dense for F and $\left\langle t_{i}: i<l\right\rangle$, or for F and $\left\{t_{i}: i<l\right\}$ (set rather than sequence). We shall abbreviate $\left\{\varphi(\rho): \rho \in{ }^{l} m\right\}$ as $\operatorname{Im} \varphi$ and refer to it as the image of φ.

The following is a sketch of the construction. Let $\langle T, \prec\rangle$ be a linear order of cardinality \aleph_{1} and let $\left\langle t_{\alpha}: \alpha \in \omega_{1}\right\rangle$ be an enumeration of T. By transfinite recursion we construct a sequence $\left\langle F_{\alpha}: \alpha \in \omega_{1}\right\rangle$ of infinite subsets of ω and a map $t \mapsto A^{t}$ from T to Γ such that
(1) $F_{\beta} \subseteq^{*} F_{\alpha}$ whenever $\alpha<\beta$
(2) $\left\langle\mathcal{F}_{\alpha}, T_{\alpha}, \mathcal{A}_{\alpha}\right\rangle$ is a bad triple, where $\mathcal{F}_{\alpha}=\left\{F_{\beta}: \beta<\alpha\right\}, T_{\alpha}=\left\{t_{\beta}: \beta<\alpha\right\}$, and $\mathcal{A}_{\alpha}=\left\{A^{t_{\beta}}: \beta<\alpha\right\}$
(3) $\left\{F_{\alpha}: \alpha \in \omega_{1}\right\}$ generates an ultrafilter on ω that by (1) will be a P-point.

For technical reasons we add a minimum and a maximum to T, if not already present.
We will formulate and prove a series of lemmas about bad triples that will facilitate such a construction; the standing assumptions in the lemmas will be
(1) \mathcal{F} and T are countable, and \mathcal{F} extends the cofinite filter,
(2) T has a minimum and a maximum, denoted 0 and 1 respectively, and
(3) $\left\langle\left[a_{n}^{0}, b_{n}^{0}\right]: n \in \omega\right\rangle=\langle[n, n+1]: n \in \omega\rangle$.

[^1]To begin we show that at any time during our construction we can assume that \mathcal{F} is a principal filter, or rather, the restriction of the cofinite filter to a single set; in the next lemma cof_{G} denotes the filter $\left\{F: G \subseteq^{*} F\right\}$.

Lemma 2.1. If $\left\langle\mathcal{F}, T, \mathcal{A}_{T}\right\rangle$ is a bad triple then there is a single infinite G such that $G \subseteq^{*} F$ for all $F \in \mathcal{F}$ and such that $\left\langle\operatorname{cof}_{G}, T, \mathcal{A}_{T}\right\rangle$ is a bad triple.

Proof. Let $\left\langle T_{n}: n \in \omega\right\rangle$ be an increasing sequence of finite sets whose union is T and let $\left\langle F_{n}: n \in \omega\right\rangle$ be a decreasing sequence in \mathcal{F} such that for every $F \in \mathcal{F}$ there is an n such that $F_{n} \subseteq F$. Recursively let φ_{m} be m-dense for F_{m} and T_{m} and such that $\operatorname{Im} \varphi_{m}$ is disjoint from $\operatorname{Im} \varphi_{i}$ for $i<m$. Then $G=\bigcup_{m \in \omega} \operatorname{Im} \varphi_{m}$ is as required.

This lemma is used at limit steps of our construction, basically to make them look like successor steps. For the remainder of the paper we shall write $\left\langle G, T, \mathcal{A}_{T}\right\rangle$ for $\left\langle\operatorname{cof}_{G}, T, \mathcal{A}_{T}\right\rangle$.

At some steps in the construction the following technical fact will be useful.
Lemma 2.2. A triple $\left\langle F, T, \mathcal{A}_{T}\right\rangle$ satisfies (2) in the definition of a bad triple if and only if for every (some) increasing sequence $\left\langle m_{n}: n \in \omega\right\rangle$ in ω and every (some) increasing sequence $\left\langle T_{n}: n \in \omega\right\rangle$ finite subsets of T such that $T=\bigcup_{n \in \omega} T_{n}$ there is a sequence $\left\langle\varphi_{n}: n \in \omega\right\rangle$ of functions such that φ_{n} is m_{n}-dense for F and T_{n}, and $\max \operatorname{Im} \varphi_{n}<\min \operatorname{Im} \varphi_{n+1}$ for all n.

Proof. For the non-trivial implication we find the functions φ_{n} by recursion: φ_{0} exists by assumption and if φ_{n} is found then we let $M=\max \operatorname{Im} \varphi_{n}$ and we choose a function φ that is $M+m_{n+1}+1$-dense for F and T_{n+1}. By condition (2b) in the definition of a bad triple we have $\varphi(M+1+\rho)>M$ whenever $\rho \in{ }^{i} m_{n+1}$ for some $i \leqslant\left|T_{n+1}\right|$ (here $M+1+\rho$ denotes the sequence obtained by adding $M+1$ to all values of ρ). Thus defining $\varphi_{n+1}(\rho)=\varphi(M+1+\rho)$ gives us our next function.

The next lemma ensures that we can make our final filter an ultrafilter.
Lemma 2.3. Let $\left\langle F, T, \mathcal{A}_{T}\right\rangle$ be a bad triple and assume $F=F_{0} \cup F_{1}$; then at least one of $\left\langle F_{0}, T, \mathcal{A}_{T}\right\rangle$ and $\left\langle F_{1}, T, \mathcal{A}_{T}\right\rangle$ is a bad triple.

Proof. We show by induction on l : if $\left\langle t_{i}: i<l\right\rangle$ is decreasing and φ is $2 m$-dense for F and $\left\langle t_{i}: i<l\right\rangle$ then φ induces an m-dense function for F_{0} or F_{1} and $\left\langle t_{i}: i<l\right\rangle$.

If $l=1$ then $\operatorname{Im} \varphi$ is just a $2 m$-element subset of F and its intersection with one of F_{0} and F_{1} has at least m elements; the increasing enumeration of that intersection is m-dense.

In the step from l to $l+1$ we let $\left\langle t_{i}: i \leqslant l\right\rangle$ and a $2 m$-dense φ be given. For each $j<2 m$ the function $\varphi_{j}:{ }^{\leqslant l} 2 m \rightarrow \omega$, defined by $\varphi_{j}(\rho)=\varphi(j \frown \rho)$, is $2 m$-dense for F and $\left\langle t_{i}: 1 \leqslant i \leqslant l\right\rangle$ and so induces an m-dense function φ_{j}^{\prime} for $F_{\epsilon_{j}}$ and $\left\langle t_{i}: 1 \leqslant i \leqslant l\right\rangle$, where $\epsilon_{j} \in\{0,1\}$. Take ϵ such that $A=\left\{j: \epsilon_{j}=\epsilon\right\}$ has size at least m and define $\varphi^{\prime}:{ }^{\leqslant l+1} m \rightarrow \omega$ by ' $\varphi^{\prime}(\langle j\rangle)$ is the j th element of A^{\prime} and $\varphi^{\prime}(j \frown \rho)=\varphi_{\varphi^{\prime}(\langle j\rangle)}^{\prime}(\rho)$ for $\rho \in{ }^{\leqslant l} m$.

Now enumerate T as $\left\langle t_{n}: n \in \omega\right\rangle$ and apply the above for each m to the pair $\left\langle t_{i}: i<m\right\rangle$ and m. Whichever of F_{0} and F_{1} appears infinitely often in the conclusion is the set that we seek.

Now we show how to extend the ordered set T by one element.
Lemma 2.4. Let $\left\langle F, T, \mathcal{A}_{T}\right\rangle$ be a bad triple and let t^{*} be a point not in T. Assume $T \cup\left\{t^{*}\right\}$ is ordered so that T retains its original order and $0 \prec t^{*} \prec 1$. Then there are $G \subseteq F$ and $A^{t^{*}} \in \Gamma$ such that $\left\langle G, \mathcal{A}_{T} \cup\left\{A^{t^{*}}\right\}, T \cup\left\{t^{*}\right\}\right\rangle$ is a bad triple.

Proof. We write T as an increasing union of finite sets T_{m}, with $0,1 \in T_{0}$ and we construct G and $A^{t^{*}}$ as follows. We apply Lemma 2.2 to find a sequence $\left\langle\varphi_{m}: m \in \omega\right\rangle$ such that φ_{m} is m^{2}-dense for F and T_{m}, and $\max \operatorname{Im} \varphi_{m}<\min \operatorname{Im} \varphi_{m+1}$ for all m.

We fix m for the moment and let $\left\langle t_{i}: i<l\right\rangle$ enumerate T_{m} in decreasing order and let i be such that $t_{i+1} \prec t^{*} \prec t_{i}$. Our task is to convert φ_{m} into an m-dense function, ψ_{m}, for our future G and $T_{m} \cup\left\{t^{*}\right\}$. The idea is simple - we use level $i+1$ in dom φ_{m} to create two levels in dom ψ_{m} — but the notation is a bit messy: we take the following subset of the domain of φ_{m} :

$$
D=\left\{\rho \in \operatorname{dom} \varphi_{m}:(\forall j \in \operatorname{dom} \rho)(j \neq i \Rightarrow \rho(j)<m)\right\}
$$

Using the m^{2} values for all $\rho(i)$ we transform D into the tree ${ }^{\leqslant l+1} m$:

- if $\operatorname{dom} \rho \leqslant i$ then ρ does not change;
- if $\operatorname{dom} \rho=i+1$ then $\rho=\rho^{\prime} \frown(k m+j)$ for some $\rho^{\prime} \in{ }^{i} m$ and $k, j<m$; in this case ρ determines two nodes: $\rho^{+}=\rho^{\prime} \frown k$ and $\rho^{++}=\rho^{\prime} \frown k^{\frown} j$
- if $i+1<\operatorname{dom} \rho$ then $\rho=\rho^{\prime} \frown(k m+j) \frown \sigma$ for some $\rho^{\prime} \in{ }^{i} m$, some $k, j<m$ and some sequence σ; then ρ determines $\rho^{+}=\rho^{\prime} \frown k^{\frown}{ }^{\circ} \sigma$.

We define $\psi_{m}:{ }^{\leqslant l+1} m \rightarrow \omega$ by

$$
\psi_{m}(\varrho)= \begin{cases}\varphi_{m}(\varrho) & \text { if } \operatorname{dom} \varrho \leqslant i \\ \varphi_{m}(\rho) & \text { if } \varrho=\rho^{++} \text {for some } \rho \in{ }^{i+1} m \\ \varphi_{m}(\rho) & \text { if } \varrho=\rho^{+} \text {for some } \rho \text { with } \operatorname{dom} \rho>i+1\end{cases}
$$

This leaves $\psi_{m}(\varrho)$ undefined in case $\operatorname{dom} \varrho=i+1$, that is, if $\varrho=\rho \frown k$ for some $\rho \in{ }^{i} m$ and $k<m$, and it is here that we build and insert part of $A^{t^{*}}$.

In words: for each $\rho \in{ }^{i} m$ we bundle the m^{2} intervals $\left[a_{\varphi_{m}(\rho \subset j)}^{t_{i+1}}, b_{\varphi_{m}(\rho-j)}^{t_{i+1}}\right]$ into groups of m consecutive ones and for each group take the smallest interval that surrounds its members.

In symbols: for each $k<m$ the interval $\left[a_{\varphi_{m}(\rho \neg(k m))}^{t_{i+1}}, b_{\varphi_{m}(\rho \frown((k+1) m-1))}^{t_{i+1}}\right]$ will be a term of $A^{t^{*}}$ and its index will be the value of ψ_{m} at $\rho \frown k$.

In the end we set $G=\bigcup_{m} \psi_{m}$ and thus ensure that for every m the function ψ_{m} will be m-dense for G and $T_{m} \cup\left\{t^{*}\right\}$.

We now turn to the task of avoiding having to add points to our linear order when we do not want to, that is, we want ensure that we can achieve property (2) (on page 95) of the embedding. It is here that we define the notion of equivalence, promised in that property.

We introduce some notation: let $F \subseteq \omega$ and let $A, B \in \Gamma$.
We say that A refines B modulo F, and we write $A \preccurlyeq_{F} B$, if for every term, $[a, b]$, of A with $[a, b] \cap F \neq \emptyset$ there is a term $[c, d]$ of B such that $[a, b] \cap F \subseteq[c, d]$.

We say that A and B are equivalent modulo F, written $A \equiv_{F} B$, if for every $n \in F$ there are terms $[a, b]$ of A and $[c, d]$ of B such that $n \in[a, b] \cap F$ and $[a, b] \cap F=[c, d] \cap F$.

Lemma 2.5. Let $\left\langle F, T, \mathcal{A}_{T}\right\rangle$ be a bad triple, let $t \in T$ and $A \in \Gamma$. Then there is $F_{t} \subseteq F$ such that $\left\langle F_{t}, T, \mathcal{A}_{T}\right\rangle$ is a bad triple and $A \preccurlyeq_{F_{t}} A^{t}$ or $A^{t} \preccurlyeq F_{t} A$; in addition if t has a direct \prec-predecessor s then we can even achieve " $A \preccurlyeq_{F_{t}} A^{s}$ or $A^{t} \preccurlyeq_{F_{t}} A$ ".

Proof. Write T as the union of an increasing sequence $\left\langle T_{m}: m \in \omega\right\rangle$ of finite sets such that $0,1, t \in T_{0}$ (and also $s \in T_{0}$ if present). Upon applying Lemmas 2.3 and 2.2 we may assume that F does not meet consecutive
intervals of A^{t}, and that we have a sequence $\left\langle\varphi_{m}: m \in \omega\right\rangle$ of functions such that φ_{m} is $(m+1)(m+2)$-dense for F and T_{m}, and max $\operatorname{Im} \varphi_{m}<\min \operatorname{Im} \varphi_{m+1}$ for all m. We also assume $F=\bigcup_{m \in \omega} \operatorname{Im} \varphi_{m}$.

Enumerate T_{m} in decreasing order as $\left\langle t_{i}^{m}<l_{m}\right\rangle$, and for every m let i_{m} be the index of t. Abbreviate $t_{i_{m}}^{m}$ as t_{m} and $t_{i_{m}+1}^{m}$ as s_{m} (so $s_{m}=s$ for all m if s is present).

We fix m for a moment and for every $\rho \in{ }^{i_{m}}((m+1)(m+2))$ we take a term $\left[a_{\rho}^{m}, b_{\rho}^{m}\right]$ of A such that

$$
J_{\rho}^{m}=\left\{j<(m+1)(m+2): A\left(s_{m}, \varphi_{m}\left(\rho^{\frown} j\right)\right) \subseteq\left[a_{\rho}^{m}, b_{\rho}^{m}\right]\right\}
$$

has maximum cardinality. Divide ${ }^{i_{m}}((m+1)(m+2))$ into two parts: $R_{m}=\left\{\rho:\left|J_{\rho}^{m}\right| \geqslant m\right\}$ and its complement S_{m}.

The proof of Lemma 2.3 gives us a subfunction ϕ_{m} of $\varphi_{m} \upharpoonright \leqslant i_{m}((m+1)(m+2))$ whose domain is $(m+1)(m+2) / 2$-branching and such that $X_{m}=\operatorname{dom} \phi_{m} \cap^{i_{m}}((m+1)(m+2))$ is a subset of R_{m} or of S_{m}.

In case $X_{m} \subseteq R_{m}$ we define a set F_{t}^{m} as follows:

$$
F_{t}^{m}=F \cap \bigcup\left\{A\left(s_{m}, \varphi(\rho \frown j)\right): \rho \in X_{m} \text { and } j \in J_{\rho}^{m}\right\}
$$

We extend ϕ_{m} to a subfunction ψ_{m} of φ_{m} by adding

$$
\left\{\rho \in \operatorname{dom} \varphi_{m}:\left(\exists \sigma \in X_{m}\right)\left(\exists j \in J_{\sigma}^{m}\right)\left(\sigma^{\frown} j \subseteq \rho\right)\right\}
$$

to its domain and using the values of φ_{m} at those points. The resulting function is (more than) m-dense for F_{t}^{m} and T_{m}. Also, if $n \in F_{t}^{m}$ then there are $\rho \in X_{m}$ and $j \in J_{\rho}^{m}$ such that $n \in A\left(s_{m}, \varphi(\rho \frown j)\right) \subseteq A(t, \varphi(\rho))$ and, by definition, $F_{t}^{m} \cap A(t, \varphi(\rho)) \subseteq\left[a_{\rho}^{m}, b_{\rho}^{m}\right]$. This shows that if F_{t}^{m} were to contribute to F_{t} it would also witness $A^{t} \preccurlyeq F_{t} A$.

Thus, if the situation $X_{m} \subseteq R_{m}$ occurs infinitely often then we can build an F_{t} such that $A^{t} \preccurlyeq_{F_{t}} A$.
In the other case we get $X_{m} \subseteq S_{m}$ infinitely (even cofinitely) often. We shall build an F_{t} that will satisfy $A \preccurlyeq F_{t} A^{t}$ and even $A \preccurlyeq_{F_{t}} A^{s}$ if s is present.

Consider an m such that $X_{m} \subseteq S_{m}$ and fix $\rho \in X_{m}$. For each term $[a, b]$ of A the set $\left\{j: A\left(s_{m}, \varphi\left(\rho{ }^{\frown} j\right)\right) \subseteq\right.$ $[a, b]\}$ has at most $m-1$ elements; as $[a, b]$ is an interval these are consecutive elements. This means that $[a, b]$ can intersect at most $m+1$ of these intervals: at most $m-1$ in the interior and possibly two more that merely overlap at the ends. We use the intervals indexed by X_{m} and $I=\{(m+2)(j+1): j<m\}$ to define F_{t}^{m} :

$$
F_{t}^{m}=F \cap \bigcup\left\{A\left(s_{m}, \varphi(\rho \frown i)\right): \rho \in X_{m} \text { and } i \in I\right\}
$$

the same formula as in the case ' $X_{m} \subseteq R_{m}$ ' with J_{ρ}^{m} replaced by I. Now if $[a, b]$ is a term of A and $n \in F_{t}^{m} \cap[a, b]$ then there are one $\rho \in X_{m}$ and one $i \in I$ such that $n \in A\left(s_{m}, \varphi(\rho \frown i)\right)$ and the latter is also the only interval of that form that $[a, b]$ intersects. It follows automatically that

$$
F_{t}^{m} \cap[a, b] \subseteq A\left(s_{m}, \varphi\left(\rho^{\frown} i\right)\right) \subseteq A\left(t, \varphi_{m}(\rho)\right) .
$$

Thus, if we let F_{t} be the union of these F_{t}^{m} then we achieve $A \preccurlyeq F_{t} A^{t}$ and even $A \preccurlyeq F_{t} A^{s}$ if s is present.
Lemma 2.6. Let $\left\langle F, T, \mathcal{A}_{T}\right\rangle$ be a bad triple and $A \in \Gamma$. Then there are $G \subseteq F$ and an extension T^{*} of T by at most one point t^{*} such that $\left\langle G, T^{*}, \mathcal{A}_{T^{*}}\right\rangle$ is a bad triple and $A \equiv{ }_{G} A^{t}$ for some $t \in T^{*}$.

Proof. We apply Lemma 2.5 countably many times and Lemma 2.1 once so that we can assume that for every $t \in T$ there is a cofinite subset F_{t} of F such that $A \preccurlyeq_{F_{t}} A^{t}$ or $A^{t} \preccurlyeq_{F_{t}} A$ and even $A \preccurlyeq_{F_{t}} A^{s}$ or $A^{t} \preccurlyeq F_{t} A$ if t has a direct \prec-predecessor s.

We divide T into $S_{0}=\left\{t: A^{t} \preccurlyeq_{F_{t}} A\right\}$ and $S_{1}=\left\{t: A \preccurlyeq F_{t} A^{t}\right\}$. Note that $0 \in S_{0}$ by default.
We need to consider several cases.
Case 1: S_{0} has a maximum and S_{1} has a minimum. Note that by the condition on direct predecessors these must be identical, say $t=\max S_{0}=\min S_{1}$. Then one verifies that $A \equiv_{F_{t}} A^{t}$.

Case 2: S_{1} is empty. In this case we have $A^{1} \preccurlyeq F A$ and we can thin out F to a set G such that $A^{1} \equiv_{G} A$; then $\left\langle G, T, \mathcal{A}_{T}\right\rangle$ is a bad triple.

For the other cases we write T as the union of an increasing sequence $\left\langle T_{m}: m \in \omega\right\rangle$ of finite sets such that $0,1 \in T_{0}$; as before we take the decreasing enumeration $\left\langle t_{i}^{m}: I<l_{m}\right\rangle$ of T_{m}. For each m we let i_{m} be such that $t_{i_{m}}^{m} \in S_{1}$ and $t_{i_{m}+1}^{m} \in S_{0}$; we denote these two points by t_{m} and s_{m} respectively.

Furthermore we choose $\left\langle\varphi_{m}: m \in \omega\right\rangle$ as in Lemma 2.2 so that φ_{m} is m-dense for F and T_{m} and such that $\operatorname{Im} \varphi_{m} \subseteq F_{t_{m}} \cap F_{s_{m}}$.

Fix m for a moment. We know that $A^{s_{m}} \preccurlyeq F_{s_{m}} A \preccurlyeq F_{t_{m}} A^{t_{m}}$; this implies that for every $\rho \in{ }^{i_{m}} m$ and every $j<m$ there is a term $[a, b]$ of A such that

$$
\begin{equation*}
A\left(s_{m}, \varphi\left(\rho^{\frown} j\right)\right) \cap F \subseteq[a, b] \cap F \subseteq A\left(t_{m}, \varphi(\rho)\right) \cap F \tag{*}
\end{equation*}
$$

indeed, $[a, b]$ is found by an application of $A^{s_{m}} \preccurlyeq F_{s_{m}} A$ and $A\left(t_{m}, \varphi(\rho)\right)$ is the only possible term of $A^{t_{m}}$ that can help witness $A \preccurlyeq F_{t_{m}} A^{t_{m}}$.

We put $G_{m}=F \cap \bigcup_{\rho} A\left(s_{m}, \varphi\left(\rho^{\frown} 0\right)\right)$, where ρ runs through ${ }^{i_{m}} m$. We can define two functions ϕ_{m} and ψ_{m} on $\leqslant l_{m}-1 m$, as follows.
(1) If $|\rho|<i_{m}$ then $\phi_{m}(\rho)=\psi_{m}(\rho)=\varphi_{m}(\rho)$.
(2) If $|\rho|=i_{m}$ then $\phi_{m}(\rho)=\varphi_{m}(\rho)$ and $\psi_{m}(\rho)=\varphi_{m}(\rho \frown 0)$.
(3) If $|\rho|>i_{m}$, say $\rho=\varrho \frown \sigma$, with $|\varrho|=i_{m}$, then $\phi_{m}(\rho)=\psi_{m}(\rho)=\varphi(\varrho \frown 0 \frown \sigma)$.

So, in ϕ_{m} we skip level $i_{m}+1$ of the domain of φ_{m} and in ψ_{m} we skip level i_{m}. The effect is that ϕ_{m} is m-dense for $T_{m} \backslash\left\{s_{m}\right\}$ and G_{m}, whereas ψ_{m} is m-dense for $T_{m} \backslash\left\{t_{m}\right\}$ and G_{m}.

In addition we have made sure that $A^{s_{m}} \equiv_{G_{m}} A \equiv_{G_{m}} A^{t_{m}}$.
We let $G=\bigcup_{m} G_{m}$ and consider the remaining cases in turn.
Case 3: S_{0} has no maximum and S_{1} has a minimum, say $s=\min S_{1}$. In this case we know that $s_{m}=s$ cofinitely often. If we drop the finitely many G_{m} for which $s_{m} \neq s$ then we achieve $A \equiv_{G} A^{t}$. Moreover $\left\langle G, T, \mathcal{A}_{T}\right\rangle$ is a bad triple, as witnessed by the functions ϕ_{m}.

Case 4: S_{0} has a maximum and S_{1} has no minimum, say $t=\max S_{0}$. In this case we know that $t_{m}=s$ cofinitely often. If we drop the finitely many G_{m} for which $s \neq t_{m}$ then we achieve $A^{s} \equiv_{G} A$. Moreover $\left\langle G, T, \mathcal{A}_{T}\right\rangle$ is a bad triple, as witnessed by the functions ψ_{m}.

Case 5: S_{0} has no maximum and S_{1} has no minimum. This case necessitates adding a new point, t^{*}, to T and inserting it into the gap formed by S_{0} and S_{1} to form T^{*}. We then redefine ϕ_{m} on level i_{m} so that its value at ρ becomes the index of the term of A that was chosen to satisfy inclusions $\left(^{*}\right)$. The new ϕ_{m} is m-dense for $\left\{t^{*}\right\} \cup T_{m} \backslash\left\{s_{m}, t_{m}\right\}$ and G_{m}; this establishes that $\left\langle G, T^{*}, \mathcal{A}_{T^{*}}\right\rangle$ is a bad triple.

Repeated application of these lemmas will prove the following theorem, where we extend the notion of equivalence to (ultra)filters: if p is an (ultra)filter on ω then $A \equiv_{p} B$ means that $A \equiv_{F} B$ for some $F \in p$.

Theorem 2.7 (CH). Let T be a linear order of cardinality at most \aleph_{1} that has a maximum and no $\langle\omega, \omega\rangle$-gaps. Then one can find a subcollection $\mathcal{A}_{T}=\left\{A^{t}: t \in T\right\}$ of Γ and a P-point ultrafilter p on ω such that
(1) $\left\langle p, T, \mathcal{A}_{T}\right\rangle$ is a bad triple
(2) for all $A \in \Gamma$, there is a $t \in T$ such that $A \equiv{ }_{p} A^{t}$.

3. Finding many different continua

In this section we shall use Theorem 2.7 (and hence the Continuum Hypothesis) to find $2^{\mathfrak{c}}$ many different subcontinua of \mathbb{H}^{*}.

We shall apply the theorem to the following type of linearly ordered sets
(1) cardinality at most \aleph_{1}
(2) no $\langle\omega, \omega\rangle$-gaps
(3) cofinality \aleph_{0} (in particular: no maximum)

In keeping with our use of the vernacular we shall call this a mean linear order.

3.1. One continuum

Let T be a mean linear order. We order $T^{+}=T \cup\{T\}$ ordered by stipulating that $t \prec T$ for all $t \in T$. We apply Theorem 2.7 to T^{+}to obtain a family $\mathcal{A}_{T}=\left\{A_{p}^{t}: t \in T^{+}\right\}$and a P-point p satisfying the conditions of that theorem. We define

$$
K_{T}=\operatorname{cl} \bigcup_{t \in T} A_{p}^{t}
$$

as announced in the beginning of Section 2.
We list some properties of K_{T} and the individual continua A_{p}^{t}.
Lemma 3.1. For every $t \neq \min T$ there is a layer L_{p}^{t} of A_{p}^{t} such that $\bigcup_{s \prec t} A_{p}^{s} \subseteq L_{p}^{t}$.
Proof. Lemma 6.2 of [10] establishes that A_{p}^{s} is contained in a layer of A_{p}^{t} whenever $s \prec t$; because \mathcal{A}_{T} is a chain this layer is independent of s. We need the assumption $t \neq \min T$ to ensure that we actually have points below t.

Lemma 3.2. Every A_{p}^{t} is nowhere dense in K_{T} and $\bigcup_{t \in T} L_{p}^{t}=\bigcup_{t \in T} A_{p}^{t}$.
Proof. Given $t \in T$ there is $s \in T$ such that $t \prec s$. Then $A_{p}^{t} \subseteq L_{s}$, which establishes the equality of the two unions.

Because L_{s} is nowhere dense in A_{p}^{s} this also implies that A_{p}^{t} is nowhere dense in K_{T}.

Lemma 3.3. K_{T} is indecomposable.

Proof. The proof is implicit in [14] and [10] as part of a construction of an indecomposable subcontinuum of \mathbb{H}^{*} called K_{9} in the latter paper.

Let L be a proper subcontinuum of K_{T}. Note that because each L_{p}^{t} is indecomposable we know that $L_{p}^{t} \subseteq L$ or $L \subseteq L_{p}^{t}$ for all t such that $L \cap L_{p}^{t}$ is nonempty. Since it is impossible that $L_{p}^{t} \subseteq L$ for all t (otherwise $L=K_{T}$) it follows that $L \cap \bigcup_{t \in T} L_{p}^{t}=\emptyset$ or $L \subseteq L_{p}^{t}$ for some t. In either case L is nowhere dense in K_{T}.

Lemma 3.4. Every A_{p}^{t} is a P-set in \mathbb{H}^{*} as is every L_{p}^{t}, for $t \neq \min T$.

Proof. The preimage of A_{p}^{t} under the parametrizing map $q: \mathbb{M}^{*} \rightarrow \mathbb{H}^{*}$ consists of \mathbb{I}_{v}, the point 1_{v-1} and the point 0_{v+1}, where v is such that $A_{p}^{t}=\left[a_{v}^{t}, b_{v}^{t}\right]$. This makes the preimage a P-set, as π is closed this implies that A_{p}^{t} is a P-set as well.

It suffices to show that L_{p}^{t} is not a countable cofinality layer in A_{p}^{t} if $t \neq \min T$. If L_{p}^{t} were such a layer then one of the open intervals with L_{p}^{t} as its end layer, call it I, would be an F_{σ}-set such that $I \cap L_{p}^{t}=\emptyset$ and $L_{p}^{t} \subseteq \operatorname{cl} I$. Now let $s \prec t$; then A_{p}^{s} is a P-set and $A_{p}^{s} \cap I=\emptyset$. It follows that $A_{p}^{s} \cap \operatorname{cl} I=\emptyset$ as well, which contradicts $L_{p}^{t} \subseteq \mathrm{cl} I$.

3.2. Consequences of homeomorphy

Let T and S be two mean linear orders. We assume we have families \mathcal{A}_{T} and \mathcal{A}_{S} and P-points p and q respectively as in Theorem 2.7. We write $F_{T}=\bigcup_{t \in T} A_{p}^{t}$ and $F_{S}=\bigcup_{s \in S} A_{q}^{s}$ and let $K_{T}=\operatorname{cl} F_{T}$ and $K_{S}=\operatorname{cl} F_{S}$. We retain the notations L_{p}^{t} and L_{q}^{t} respectively for the layers from Lemma 3.1. We assume that K_{T} and K_{S} are homeomorphic and let $f: K_{T} \rightarrow K_{S}$ be a homeomorphism.

Lemma 3.5. $f\left[F_{T}\right]=F_{S}$.
Proof. Let $t \in T$. Because the P -set $f\left[A_{p}^{t}\right]$ is in the closure of the F_{σ}-set F_{S} it must actually intersect that set. Thus there is an $s \in S$ such that $f\left[A_{p}^{t}\right] \cap A_{q}^{s} \neq \emptyset$ and hence $f\left[A_{p}^{t}\right] \cap L_{q}^{r} \neq \emptyset$ whenever $s \prec r$ in S. It follows that $f\left[A_{p}^{t}\right] \subseteq L_{q}^{r}$ or $L_{q}^{r} \subseteq f\left[A_{p}^{t}\right]$ for all $r \succ s$ and because $f\left[A_{p}^{t}\right]$ is nowhere dense in K_{S} we must have $f\left[A_{p}^{t}\right] \subseteq L_{q}^{r}$ for a final segment of r in S.

This shows that $f\left[F_{T}\right] \subseteq F_{S}$ and, using f^{-1} instead of f, we can also deduce that $F_{S} \subseteq f\left[F_{T}\right]$. Thus we find that F_{T} is mapped onto F_{S} by f.

Our aim is now to show that T and S have isomorphic final segments.
Let $T^{\prime}=\left\{t \in T:(\exists s \in S)\left(A_{q}^{s} \subseteq f\left[L_{p}^{t}\right]\right)\right\}$ and, symmetrically, let $S^{\prime}=\left\{s \in S:(\exists t \in T)\left(f\left[A_{p}^{t}\right] \subseteq L_{q}^{s}\right)\right\}$. We shall show that T^{\prime} and S^{\prime} are isomorphic by showing that f induces an isomorphism between the families $\left\{L_{p}^{t}: t \in T^{\prime}\right\}$ and $\left\{L_{q}^{s}: s \in S^{\prime}\right\}$ (ordered by inclusion).

Let $t \in T^{\prime}$ and consider $f\left[A_{p}^{t}\right]$; this is a decomposable continuum and hence it is an interval of some standard subcontinuum. We shall find $A \in \Gamma$ such that $f\left[A_{p}^{t}\right]$ is in fact an interval of A_{q}. To this end let $\left\langle\left[c_{n}, d_{n}\right]: n \in \omega\right\rangle$ be a sequence of closed intervals with $d_{n}=c_{n+1}$ for all n and let $r \in \omega^{*}$ be such that $f\left[A_{p}^{t}\right]$ is an interval of $\left[c_{r}, d_{r}\right]$. For every n let $i_{n}=\left\lfloor c_{n}\right\rfloor$ and $j_{n}=\left\lceil d_{n}\right\rceil$.

There is a member R of r such that if $n<m$ in R then $j_{n}<i_{m}$ and in this case we can assume that $\left\langle\left[i_{n}, j_{n}\right]: n \in R\right\rangle$ is a subsequence of some $A \in \Gamma$. It is clear that $\left[c_{r}, d_{r}\right] \subseteq\left[i_{r}, j_{r}\right]$ and it is also true that $q \in$ $f\left[A_{p}^{t}\right] \subseteq\left[c_{r}, d_{r}\right]$; together these statements imply that $A_{q}=\left[i_{r}, j_{r}\right]$, so that $f\left[A_{p}^{t}\right]$ is indeed an interval of A_{q}.

Now let $s_{t} \in S$ be such that $A \equiv_{q} A^{s_{t}}$ and fix some $s \in S$ such that $A_{q}^{s} \subseteq f\left[L_{p}^{t}\right]$. We claim that $s \prec s_{t}$. Indeed, if $s_{t} \preccurlyeq s$ then we find that $A_{q}^{s_{t}} \subseteq A_{q}^{s} \subseteq f\left[L_{p}^{t}\right]$ and hence that $A_{q}^{s_{t}}$ is nowhere dense in $f\left[A_{p}^{t}\right]$ and hence in A_{q}, which contradicts $A \equiv_{q} A^{s_{t}}$. Thus we find that $A_{q}^{s} \subseteq L_{q}^{s_{t}}$ and hence that $f\left[L_{p}^{t}\right] \cap L_{q}^{s_{t}} \neq \emptyset$. But $f\left[L_{p}^{t}\right]$ is a layer of $f\left[A_{p}^{t}\right]$ and hence of $A_{q} \cup A_{q}^{s_{t}}$, as is $L_{q}^{s_{t}}$ of course. But then we must have $f\left[L_{p}^{t}\right]=L_{q}^{s_{t}}$.

Since $L_{p}^{t_{1}}$ is nowhere dense in $L_{p}^{t_{2}}$, whenever $t_{1} \prec t_{2}$ in T, the map $t \mapsto s_{t}$ from T^{\prime} to S^{\prime} is strictly increasing; that it is surjective follows by interchanging S^{\prime} and T^{\prime} and considering f^{-1}.

This shows that T^{\prime} and S^{\prime} are isomorphic.

3.3. Many ordered sets

We define a family of $2^{\aleph_{1}}$ many linear orders of countable cofinality and without isomorphic final segments.
For a set X of countable limit ordinals we define a linear order L_{X} by inserting upside-down copies of ω into ω_{1}, one between α and $\alpha+1$ for every $\alpha \in X$. More formally we let

$$
L_{X}=\left\{\langle\alpha, m\rangle \in \omega_{1} \times \omega: \alpha \notin X \rightarrow m=0\right\}
$$

ordered by $\langle\alpha, m\rangle \prec\langle\beta, n\rangle$ if 1) $\alpha \in \beta$, or 2) $\alpha=\beta$ and $m=0<n$, or 3) $\alpha=\beta$ and $m>n>0$.
Proposition 3.6. L_{X} and L_{Y} are isomorphic iff $X=Y$.
Proof. Let $f: L_{X} \rightarrow L_{Y}$ be an isomorphism. We show by induction that $f(\langle\alpha, 0\rangle)=\langle\alpha, 0\rangle$ for every limit ordinal α as well as $\alpha \in X$ iff $\alpha \in Y$.

In both L_{X} and L_{Y} the point $\langle\omega, 0\rangle$ has $\omega \times\{0\}$ as its set of predecessors and so $f(\langle\omega, 0\rangle)=\langle\omega, 0\rangle$. Assume α is a limit and that $f(\langle\beta, 0\rangle)=\langle\beta, 0\rangle$ for all limits below α. If α is a limit of limits then in both ordered sets we have $\langle\alpha, 0\rangle=\sup \{\langle\beta, 0\rangle: \beta \in \alpha$ and β is a limit $\}$ and hence $f(\langle\alpha, 0\rangle)=\langle\alpha, 0\rangle$.

Next assume $\alpha=\beta+\omega$ for a limit β. If $\beta \notin X$ then $\langle\beta+1,0\rangle$ is the direct successor in L_{X} of $\langle\beta, 0\rangle$, hence $\langle\beta, 0\rangle$ must have a direct successor in L_{Y} as well. From this it follows that $\beta \notin Y$ and $f(\langle\beta+n, 0\rangle)=$ $\langle\beta+n, 0\rangle$ for all $n \in \omega$ and hence also $f(\langle\alpha, 0\rangle)=\langle\alpha, 0\rangle$.

If $\beta \in X$ then the interval $(\langle\beta, 0\rangle,\langle\alpha, 0\rangle)$ has the same order type as \mathbb{Z}, the set of integers. Now the interval $(\langle\beta, 0\rangle,\langle\beta, 1\rangle]$ is infinite and every point in it has a direct predecessor. This means that $f(\langle\beta, 1\rangle) \prec\langle\alpha, 0\rangle$ and hence that $\langle\beta, 0\rangle$ does not have a direct successor in L_{Y} and hence that $\beta \in Y$. It follows that f maps the interval $(\langle\beta, 0\rangle,\langle\alpha, 0\rangle)$ isomorphically onto the corresponding interval of L_{Y} and that $f(\langle\alpha, 0\rangle)=\langle\alpha, 0\rangle$.

From L_{X} we define T_{X} to be the ordered sum of ω copies of L_{X} :

$$
T_{X}=\omega \times L_{X}
$$

ordered lexicographically. Now note that the points $\langle n,\langle 0,0\rangle\rangle$ are the only ones in T_{X} whose sets of predecessors have cofinality \aleph_{1}.

Thus, if f is an isomorphism between final segments of some T_{X} and T_{Y} then there an isomorphism g between final segments of ω such that $f(\langle n,\langle 0,0\rangle\rangle)=\langle g(n),\langle 0,0\rangle\rangle$ for all n in the final segment on the T_{X}-side. For each such n the map f then maps $\{n\} \times L_{X}$ isomorphically onto $\{g(n)\} \times L_{Y}$. It follows that $X=Y$.

This then provides us with our family of $2^{\aleph_{1}}$ many linear orders, indexed by the family of sets of countable limit ordinals.

This proves the following theorem and with it the existence of a family of 2^{c} many mutually nonhomeomorphic subcontinua of \mathbb{H}^{*}.

Theorem 3.7 (CH). There is a family of $2^{\text {c }}$ mean linear orders such that no two members have isomorphic final segments.

3.4. Summary: two families of continua

The combination of Subsection 3.2 and Theorem 3.7 tells us that $\left\{K_{T_{X}}: X\right.$ a set of countable limit ordinals $\}$ is a family of 2^{c} many indecomposable subcontinua of \mathbb{H}^{*} that are mutually non-homeomorphic.

To get a family of $2^{\mathfrak{c}}$ many decomposable continua use Lemma 1.3 to deduce that in our construction the continuum K_{T} is actually a layer of the 'top continuum' $A_{T^{+}}$. Indeed, K_{T} is a subset of some layer L of $A_{T^{+}}$; if it were a proper subset then there would be a standard subcontinuum M with $K_{T} \subseteq M \subseteq L$. As in Subsection 3.2 we could then find $A \in \Gamma$ such that M is an interval of A; yet there would be no $t \in T^{+}$ such that $A \equiv_{p} A^{t}$.

Our second family is now obtained by taking for every set X of countable limit ordinals the interval [$a_{X}, K_{T_{X}}$] of the standard subcontinuum $A_{T_{X}^{+}}$, where a_{X} is the initial point of $A_{T_{X}^{+}}$as described in Subsection 1.2. These decomposable continua are mutually non-homeomorphic because a homeomorphism between
[$a_{X}, K_{T_{X}}$] and $\left[a_{Y}, K_{T_{Y}}\right]$ will have to map a_{X} to a_{Y} (as these are the unique end points) and $K_{T_{X}}$ onto $K_{T_{Y}}$; the latter is not possible if $X \neq Y$.

Remark 3.1. The family in [4] consists of standard subcontinua. By one of the results in [5] CH implies that all standard subcontinua are homeomorphic. Thus there is a striking difference between the effects of CH and $\neg \mathrm{CH}$ on the structure of family of standard subcontinua.

Our result shows that under CH each standard subcontinuum has a rich variety of layers and intervals. We leave as an open question how rich this variety is in ZFC alone.

4. A first-countable continuum

As mentioned in the introduction CH implies that the continuous images of \mathbb{H}^{*} are precisely the continua of weight \mathfrak{c} or less - in particular every first-countable continuum is such an image. In this section we show that in the absence of CH there may be a first-countable continuum that is neither an image of ω^{*} nor of \mathbb{H}^{*}.

4.1. Bell's graph

A major ingredient in our construction is Bell's graph, constructed in [2]. It is a graph on the ordinal ω_{2}, represented by a symmetric subset E of $\left(\omega_{2}\right)^{2}$. The crucial property of this graph is that there is no map $\varphi: \omega_{2} \rightarrow \mathcal{P}(\omega)$ that represents this graph, where φ represents E if $\langle\alpha, \beta\rangle \in E$ if and only if $\varphi(\alpha) \cap \varphi(\beta)$ is infinite.

Bell's graph exists in any forcing extension in which \aleph_{2} Cohen reals are added; for the reader's convenience we shall, in Subsection 4.5 below, describe the construction of E and adapt Bell's proof so that it applies to continuous maps defined on \mathbb{H}^{*}. The proof shows that a similar graph also exists in the extension by \aleph_{2} random reals.

4.2. Building C_{E}

Our starting point is a connected version of the Alexandroff double of the unit interval, devised by Saalfrank [13]. We topologize the unit square as follows.
(1) A local base at points of the form $\langle x, 0\rangle$ consists of the sets

$$
U(x, 0, n)=\left(x-2^{-n}, x+2^{-n}\right) \times[0,1] \backslash\{x\} \times\left[2^{-n}, 1\right]
$$

(2) A local base at points of the form $\langle x, y\rangle$, with $y>0$ consists of the sets

$$
U(x, y, n)=\{x\} \times\left(y-2^{-n}, y+2^{-n}\right)
$$

We call the resulting space the connected comb and denote it by C. It is straightforward to verify that C is compact, Hausdorff and connected; it is first-countable by definition.

For each $x \in[0,1]$ and positive a we define the following cross-shaped closed subset of C^{2} :

$$
D_{x, a}=(\{x\} \times[a, 1] \times C) \cup(C \times\{x\} \times[a, 1])
$$

We note the following two properties of the sets $D_{x, a}$
(1) if $a<b$ then $D_{x, b}$ is in the interior of $D_{x, a}$, and
(2) if $x \neq y$ then $D_{x, a} \cap D_{y, a}$ is the union of two squares: $\{x\} \times[a, 1] \times\{y\} \times[a, 1]$ and $\{y\} \times[a, 1] \times\{x\} \times[a, 1]$.

Next take any \aleph_{2}-sized subset of $[0,1]$ and index it (faithfully) as $\left\{x_{\alpha}: \alpha<\omega_{2}\right\}$. We use this indexing to identify E with the subset $\left\{\left\langle x_{\alpha}, x_{\beta}\right\rangle:\langle\alpha, \beta\rangle \in E\right\}$ of the unit square. We remove from C^{2} the following open set:

$$
\bigcup_{\langle x, y\rangle \notin E}((\{x\} \times(0,1] \times\{y\} \times(0,1]) \cup(\{y\} \times(0,1] \times\{x\} \times(0,1]))
$$

The resulting compact space we denote by C_{E}. Observe that the intersections $D_{x_{\alpha}, a} \cap C_{E}$ represent E in the sense that $D_{x_{\alpha}, a} \cap D_{x_{\beta}, a} \cap C_{E}$ is nonempty if and only if $\langle\alpha, \beta\rangle \in E$. We write $D_{x, a}^{E}=D_{x, a} \cap C_{E}$.

4.3. C_{E} is (arcwise) connected

To begin: the square S of the base line of C is a subset of C_{E} and homeomorphic to the unit square so that it is (arcwise) connected.

Let $\langle x, a, y, b\rangle$ be a point of C_{E} not in S. If, say, $a=0$ then $\{\langle x, 0\rangle\} \times(\{y\} \times[0, b])$ is an arc in C_{E} that connects $\langle x, 0, y, b\rangle$ to the point $\langle x, 0, y, 0\rangle$ in S. If $a, b>0$ then $\langle x, y\rangle \in E$, so the whole square $\{x\} \times[0,1] \times\{y\} \times[0,1]$ is in C_{E} and it provides us with an arc in C_{E} from $\langle x, a, y, b\rangle$ to $\langle x, 0, y, 0\rangle$.

We find that C_{E} is a first-countable continuum.

4.4. C_{E} is not an \mathbb{H}^{*}-image

Assume $h: \mathbb{H}^{*} \rightarrow C_{E}$ is a continuous surjection and consider, for each α, the sets $D_{x_{\alpha}, \frac{3}{4}}^{E}$ and $D_{x_{\alpha}, \frac{1}{2}}^{E}$.
Using standard properties of $\beta \mathbb{H}$, see [10, Proposition 3.2], we find for each α a sequence $\left\langle\left(a_{\alpha, n}, b_{\alpha, n}\right)\right.$: $n \in \omega\rangle$ of open intervals with rational endpoints, and with $b_{\alpha, n}<a_{\alpha, n+1}$ for all n, such that $h^{\leftarrow}\left[D_{x_{\alpha}, \frac{3}{4}}^{E}\right] \subseteq$ $\operatorname{Ex} O_{\alpha} \cap \mathbb{H}^{*} \subseteq h^{\leftarrow}\left[D_{x_{\alpha}, \frac{1}{2}}^{E}\right]$, where $O_{\alpha}=\bigcup_{n}\left(a_{\alpha, n}, b_{\alpha, n}\right)$ and $\operatorname{Ex} O_{\alpha}=\beta \mathbb{H} \backslash \operatorname{cl}\left(\mathbb{H} \backslash O_{\alpha}\right)$.

Because the intersections of the sets $D_{x_{\alpha}, a}^{E}$ represent E the intersections of the O_{α} will do this as well: the conditions ' $O_{\alpha} \cap O_{\beta}$ is unbounded' and ' $\langle\alpha, \beta\rangle \in E$ ' are equivalent.

In the next subsection we show that for (many) $\langle\alpha, \beta\rangle$ this equivalence does not hold and that therefore C_{E} is not a continuous image of \mathbb{H}^{*}.

Note also that our continuum is not an ω^{*}-image either: if $g: \omega^{*} \rightarrow C_{E}$ were continuous and onto we could use clopen subsets of ω^{*} and their representing infinite subsets of ω to contradict the unrepresentability property of E.

4.5. Building the graph

We follow the argument from [2] and we rely on Kunen's book [11, Chapter VII] for basic facts on forcing. We let $L=\left\{\langle\alpha, \beta\rangle \in\left(\omega_{2}\right)^{2}: \alpha \leqslant \beta\right\}$ and we force with the partial order $\operatorname{Fn}(L, 2)$ of finite partial functions with domain in L and range in $\{0,1\}$. If G is a generic filter on $\operatorname{Fn}(L, 2)$ then we let $E=\{\langle\alpha, \beta\rangle: \bigcup G(\alpha, \beta)=1$ or $\bigcup G(\beta, \alpha)=1\}$.

To show that E is as required we take a nice name \dot{F} for a function, F, from ω_{2} to $\left(\mathbb{Q}^{2}\right)^{\omega}$ that represents a choice of open sets $\alpha \mapsto O_{\alpha}$ as above in that $F(\alpha)=\left\langle\left\langle a_{\alpha, n}, b_{\alpha, n}\right\rangle: n \in \omega\right\rangle$ for all α. As a nice name \dot{F} is a subset of $\omega_{2} \times \omega \times \mathbb{Q}^{2} \times \operatorname{Fn}(L, 2)$, where for each point $\langle\alpha, n, a, b\rangle$ the set $\{p:\langle\alpha, n, a, b, p\rangle \in \dot{F}\}$ is a maximal antichain in the set of conditions that forces the nth term of $\dot{F}(\alpha)$ to be $\langle a, b\rangle$.

For each α we let I_{α} be the set of ordinals that occur in the domains of the conditions that appear as a fifth coordinate in the elements of \dot{F} with first coordinate α. The sets I_{α} are countable, by the ccc of $\operatorname{Fn}(L, 2)$. We may therefore apply the Free-Set Lemma, see [9, Corollary 44.2], and find a subset A of ω_{2} of cardinality \aleph_{2} such that $\alpha \notin I_{\beta}$ and $\beta \notin I_{\alpha}$ whenever $\alpha, \beta \in A$ and $\alpha \neq \beta$.

Let $p \in \operatorname{Fn}(L, 2)$ be arbitrary and take α and β in A with $\alpha<\beta$ and such that $\alpha>\eta$ whenever η occurs in p. Consider the condition $q=p \cup\{\langle\alpha, \beta, 1\rangle\}$. If q forces $O_{\alpha} \cap O_{\beta}$ to be bounded in $[0, \infty)$ then we are done: q forces that the equivalence fails at $\langle\alpha, \beta\rangle$.

If q does not force the intersection to be bounded we can extend q to a condition r that forces $O_{\alpha} \cap O_{\beta}$ to be unbounded. We define an automorphism h of $\operatorname{Fn}(L, 2)$ by changing the value of the conditions only at $\langle\alpha, \beta\rangle$: from 0 to 1 and vice versa. The condition p as well as the values $\dot{F}(\alpha)$ and $\dot{F}(\beta)$ are invariant under h. It follows that $h(r)$ extends p and

$$
h(r) \Vdash \bigcup \dot{G}(\alpha, \beta)=0 \text { and } O_{\alpha} \cap O_{\beta} \text { is unbounded }
$$

so again the equivalence is forced to fail at $\langle\alpha, \beta\rangle$.
Remark 4.1. The argument above goes through almost verbatim to show that Bell's graph can also be obtained adding \aleph_{2} random reals. When forcing with the random real algebra one needs only consider conditions that belong to the σ-algebra generated by the clopen sets of the product $\{0,1\}^{L}$; these all have countable supports so that, again by the ccc, one can define the sets I_{α} as before. The rest of the argument remains virtually unchanged.

Remark 4.2. Bell's original example from [2] was not easily made connected. One obtains an essentially equivalent example by taking the square of the Alexandroff double of the unit interval (the subspace $\{\langle x, i\rangle$: $x \in[0,1], i \in\{0,1\}\}$ of C) and removing the points $\langle\langle x, 1\rangle,\langle y, 1\rangle\rangle$ with $\langle x, y\rangle \notin E$.

References

[1] A.V. Arhangel'skiĭ, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969) 951-955, Russian original: Dokl Akad Nauk SSSR 187 (1969) 967-970, MR0251695 (40 \#4922).
[2] Murray G. Bell, The space of complete subgraphs of a graph, Comment. Math. Univ. Carol. 23 (3) (1982) 525-536, MR677860 (84a:54050).
[3] Murray G. Bell, A first countable compact space that is not an ω^{*} image, Topol. Appl. 35 (2-3) (1990) 153-156, MR1058795 (91m:54028).
[4] Alan Dow, Some set-theory, Stone-Čech, and F-spaces, Topol. Appl. 158 (14) (2011) 1749-1755, http://dx.doi.org/ 10.1016/j.topol.2011.06.007, MR2823685.
[5] Alan Dow, Klaas Pieter Hart, Čech-Stone remainders of spaces that look like [0, ∞), Acta Univ. Carol., Math. Phys. 34 (2) (1993) 31-39, Selected papers from the 21st Winter School on Abstract Analysis (Poděbrady, 1993), MR1282963 (95b:54031).
[6] Alan Dow, Klaas Pieter Hart, ω^{*} has (almost) no continuous images, Isr. J. Math. 109 (1999) 29-39, http://dx.doi.org/ 10.1007/BF02775024, MR1679586 (2000d:54031).
[7] Alan Dow, Klaas Pieter Hart, A universal continuum of weight §, Trans. Am. Math. Soc. 353 (5) (2001) 1819-1838, MR1707489 (2001g:54037).
[8] Alan Dow, Klaas Pieter Hart, A separable non-remainder of \mathbb{H}, Proc. Am. Math. Soc. 136 (11) (2008) 4057-4063, http://dx.doi.org/10.1090/S0002-9939-08-09357-X, MR2425747 (2009h:03066).
[9] Paul Erdős, András Hajnal, Attila Máté, Richard Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Stud. Logic Found. Math., vol. 106, North-Holland Publishing Co., Amsterdam, 1984, MR795592 (87g:04002).
[10] Klaas Pieter Hart, The Čech-Stone compactification of the real line, in: Recent Progress in General Topology, 1992, pp. 317-352, MR95g:54004.
[11] Kenneth Kunen, Set Theory, Stud. Logic Found. Math., vol. 102, North-Holland Publishing Co., Amsterdam, 1980, An introduction to independence proofs, MR597342 (82f:03001).
[12] I.I. Parovičenko, A universal bicompact of weight «, Sov. Math. Dokl. 4 (1963) 592-595, Russian original: Ob odnom universal'nom bikompakte vesa ભ, Dokl Akad Nauk SSSR 150 (1963) 36-39, MR27\#719.
[13] C.W. Saalfrank, Retraction properties for normal Hausdorff spaces, Fundam. Math. 36 (1949) 93-108, MR0031710 (11,194b).
[14] Jian-Ping Zhu, Continua in \mathbf{R}^{*}, Topol. Appl. 50 (2) (1993) 183-197, http://dx.doi.org/10.1016/0166-8641(93)90020-E, MR1217484 (94c:54050).

[^0]: * Corresponding author.

 E-mail addresses: adow@uncc.edu (A. Dow), k.p.hart@tudelft.nl (K.P. Hart).
 URLs: http://www.math.uncc.edu/~adow (A. Dow), http://fa.its.tudelft.nl/~hart (K.P. Hart).
 ${ }^{1}$ Research of the first author was supported by NSF grant No. NSF-DMS-1501506.

[^1]: ${ }^{2}$ The word 'good' seems overused and, especially in the vernacular, 'bad' may carry a positive connotation

