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ULTRAFILTERS OF CHARACTER o,

KLAAS PIETER HART!

Abstract. Using side-by-side Sacks forcing, it is shown that it is consistent that 2¢ be large
and that there be many types of ultrafilters of character w,.

§0. Introduction, The aim of this paper is to prove the relative consistency of
“ZFC + 2° is big + there are many types of ultrafilters of character w,”.

There are already.quite a few ultrafilters of character less than 2, for example the
one constructed by Kunen [Ku2; VIII, A10] using iterated forcing, and also Shelah’s
[Sh] unique Ramsey ultrafilter. There is also the model in [BaLa] in which every
selective ultrafilter is of character w,. All of these ultrafilters have one thing in
common: they are selectives or P-points, or constructed using selectives or P-points.

Inspired by a question of Bukovsky: “Is it consistent that there are no P-points,
yet there is an ultrafilter of character less than 27, we found ultrafilters that are
somewhat higher in the Rudin-Frolik order <yr on w*. We find among others an
unbounded w,-chain consisting of ultrafilters of character w,,a point with exactly w
predecessors and a weak P-point that is not a P-point.

Our strategy is to build these ultrafilters in such a way that after adding any
number of Sacks reals side-by-side they will (i) still be ultrafilters and (ii) still have
most of their pleasant properties. This paper owes much to Laver’s paper [La] in
which an indestructible selective ultrafilter on w is constructed (i.e. Sacks reals do
not destroy ultrafilterness).

The paper is organized as follows. §§1 and 2 contain definitions and preliminaries.
In §3 we prove some simple results on preservation of properties of ultrafilters when
forcing with various types of posets. In §§4, 5 and 6 we adapt some older
constructions to our needs and produce many selectives, P-points, an w;-OK point
which is not a P-point and the promised w,-chain. In §7 we give a new (we think) CH-
construction of a point with w, <gg-predecessors. In §8 we state the full consistency
result. Finally, §9 contains some questions and remarks.
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I would like to thank Lev Bukovsky for raising the abovementioned question,
which is not solved here, but which did start the research for this paper.

§1. Definitions, notation and preliminaries. For set theory we refer to [Ku2]; for
more information on fw we refer to [VM].

As usual, if X is a set then we define [X]~° = {F € X:|F| < w},[X]5° = {C &
X:|C| < w}and [X]® = [X]=°\[X ]~

For A, B < w, A =* B means that A\ B is finite, A <* B means 4 =* B but not
B =* A, and A =* B means that A =* Band B =* A4.

All ultrafilters are assumed to be on w and nonprincipal. For 4 = w, A* = {u: uis
an ultrafilter and 4 € u}. Then {A*: A € u} is alocal base at the point u of w*. Also it
is easy to verify that A* < B*iff 4 =* B, A* = B*iff A =* B, etc.

An ultrafilter u is said to be selective iff whenever £ is a partition of w, either
P Nnu+# orthereis a Ueusuch that |[U n P| <1 forall Pe?; wecall U a
selector for 2 in this case. We call u a Q-point iff it is selective for all partitions of w
into finite sets. We call u a P-point iff whenever £ is a partition of w, either Z N u
# Forthereisa U € usuch that |U n P| < wfor all P € #. Clearly u is selective iff
it is both a P-point and a Q-point. We call u w,-OK [Ku 1] iff whenever {V,: n € w}
< u there is {U,: « € w; } < u such that whenever a; <o, <--- <a,in w,, (-, U,
c*V,. Wecall {U,: « € , } OK for {V,:n € w}. Finally, u is a weak P-point iff there
is no countable subset of w* having u as an accumulation point. It is not too difficult
to show [Kul] that every w,-OK point is a weak P-point. A base for an ultrafilter
u is a subset # of u such that YU e udB € #: B < U. The character of u is y(u) =
min{|%|: 4 is a base for u}. It is well known that, for all u, w; < y(u) < 2, and that
e.g. MA implies that y(u) = 2¢ for all u € w*.

Two sets A, B < w are almost disjoint iff A n B =* (&. An almost disjoint (A.D.)
Sfamily on w is a family &/ of infinite subsets of w such that any two of its members
are almost disjoint. It is known that A.D. families of size 2¢ exist.

Let P be a poset. We call P <k, A, u>-distributive, where k, 4 and p are cardinals, iff
whenever p € P and 7 are such that p |- “7: k — 17, there are ¢ < pand F: k —» [A]™*
such that, for all « € «, g |- “t(«) € F(«)”, i.e. T can be approximated from the outside
by a narrow (width < p) pipe from the ground model. We call P “w-bounding iff
whenever p € P and t are such that p |- “7: @ —» w” thereare g < pand f: ®w - wsuch
that g |- “t(n) < f(n)” for all n € w. One readily sees that P is “w-bounding iff it is
{w, w, w)-distributive. Finally, let u be an ultrafilter; we call u P-indestructible iff
e “u generates an ultrafilter”. It is an easy observation that u is P-indestructible iff
whenever p € P and 7 are such that p |- “t: w — 2” there are ¢ < p and U € u such
that g |- “z | U is constant”.

§2. Side-by-side Sacks forcing. A good introduction to this type of forcing can be
found in [Ba]. We shall describe the poset used and derive some facts about new
reals and old ultrafilters needed in this paper.

Let Seq = U {"2:n € w}. A nonempty subset p of Seq is a perfect tree iff

(i) VsepVnew:snep,and

(i) VsepItep:s<tandt 0, 1€p.

Let PF = {p:p is a perfect tree} ordered by inclusion: p < q iff p = gq. For a
cardinal k let P(x) = {p: p is a function, dom(p) € [x]=®, ran(p) < PF} ordered by -
p < q iff dom(g) = dom(p) and Vo € dom(q): p(«) < q().
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Forcing with PF is usually called Sacks forcing or perfect-set forcing. If G is
generic on PF then x¢ = ) () G is an element of “2, usually called a Sacks real.
Likewise a generic set G on P(k) determines « different reals: for each a we get x,
=(J ) {p(@):pe G, a e dom(p)}. In [Ba] it is shown that if the ground model
satisfies CH then P(x) preserves all cardinals and the new value of 2¢ is the old
value of . Thus, using side-by-side Sacks forcing, 2® can be made as big as
you want.

We introduce some notation. For p € PF and s € p put

fi(s, p) = |{i e dom(s): s [ i"<1 — s5(i)) € p},

the forking level of s in p; fl(s, p) is the number of forks below s in the tree p. We put
I(p,n) = {sep:fi(s,p) = n + 1 and t < s - fl(t, p) < n}; note that |I(p,n)| = 2"*1.

ForpePFandsepweletpls={tep:t<sv s<t};notethatp|sePF We
extend the above notions to P(k). Let p € P(x), F < dom(p) finite and o: F —» PF
such that o(x) € p(x) for € F; then g =p| o is the element of P(x) satisfying
dom(q) = dom(p), for a € F,q(®) = p(2) [ a() and for « € dom(p)\ F, q(2) = p(). If,
in addition, n € w then

I(p, F,n) = {a:dom(g) = F and for « € F,a(x) € I(p(x), n)};

note that |I(p, F,n)| = 2/FI*@+ 1),

From [Ba] we quote

2.0. LeMMA. If peP(k) and p |-“t:w — A”, then there are a q < p, a sequence
(F,:new) of finite subsets of dom(q) and a function f: Unewl(q,F,,,n)——»A such that:

(i) Fo < F, < -+ and dom(g) = | J,c,, F,, and

(i) if o €l(g,F,,n)thenq | o |F“t(n) = f(0)”. O

2.1. CorOLLARY. P(k) is {w, A, w)-distributive for every A, and in particular it is
“w-bounding.

O If p | “t: @ — A” then in the terminology of 2.0 set

G,={f(0):0ellgF,n} (new)

Then each G, is finite and, for every n e w, q |F“t(n) € G,>. O

The method of proof of Lemma 2.0 also establishes the fact that P(x) is proper.

To be able to handle new reals and to formulate a convenient criterion for P(x)-
indestructibility, we introduce some more notation. First we show that we can
restrict our attention to P(w).

2.2. LEMMA. Let u be an ultrafilter. The following are equivalent:

(i) u is P(x)-indestructible for all infinite k.

(i) u is P(x)-indestructible for some infinite k.

(iii) u is P(w)-indestructible.

0O (i) — (i) is trivial, and (ii) - (iii) holds because P(w) is a complete suborder
of P(x).

For (iii) — (i) let k > w and assume p |- “1: w — 2”. Identifying dom(p) with w, we
have p € P(w). Find q € P(w), ¢ < p, and U € u such that g |-“t [ U is constant”.
Reversing the process, we get ¢ < p in P(k), forcing the same thing. [J

We denote by A the set of pairs {p, f> where p € P(w) and f: U,,G,,, I(p,n,n) - 2.
Note that A has cardinality 2. If {p, ') € A then <p, f> determines (a name for) a
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new real ¢, by requiring that

Vo el(p,n,n) plol-“d, (n) = f(o)

We get the following useful lemma.

2.3. LeMMA. For an ultrafilter u on w the following are equivalent:

(1) u is P(w)-indestructible.

(ii) For all {p,f € A there are a < p and a U € u such that q|-“¢, (| U is
constant”.

[0 (i) — (ii) is easy. For (ii) — (i) assume that r |- “z: @ — 2”. Applying Lemma 2.0
and noting that in case k = @ we can take F, = n for all n, we can find {(p,f> € 4
suchthatp =tandVne w Vo € l(p,n,n) p | o |- “1(n) = f(c)”. But then p | ¢ |-“1(n)
= f(o) = ¢(n)” for all n and o. It follows that p |-“z = ¢, ;. Now find g < p and
Ueuasin(ii). Theng < rand q|-“t [ U is constant”. []

It follows that when constructing P(x)-indestructible ultrafilters one has to take
care of 2 objects only. In fact if CH holds only w, tasks need to be done, and when
studying w* that is always comforting [vM].

The ideas expressed in Lemmas 2.2 and 2.3 are implicit in Laver’s construction of
an indestructible selective ultrafilter [La]. I have spelled them out here for future
reference.

I end this section with a statement of Laver’s theorem [La], which is basic to this
paper.

2.4. THEOREM. If p e P(w) and t are such that p|“1:w — 2", then for every
infinite A <  there are q <p and an infinite B< A such that q|“t| B is
constant”. [

§3. Preservation of properties.

In this section we collect a few easy results that guarantee the preservation of
some of the properties that an ultrafilter may have. For the rest of this section Pis a
poset and u is a P-indestructible ultrafilter.

3.0. LeMMA. [BISh]. If P is proper and u is a P-point then 1 |-“u is a P-point”.

O Ifin M[G] {U,: n € w} is a subfamily of u then, because P is proper, there is in
M a subfamily {V,: n € w} of u such that {U,:n e w} < {V¥,:n € w}. Now pick U e u
such that Vne w U =*V,. Then surely Vne w U <*U,. [

Our next lemma deals with Q-points. For this we need a criterion for u to be a Q-
point due to Coplakova and Vojtas [CoVo]. Let f € “wbesuch thatVne wn < f(n)
< f(n + 1). Define f € “w by f(0) = f(0) and f(n + 1) = f(f(n)) (n > 0). Next let
P; = {[0, f(0)), [ f(0), f(1)),...}, a partition of w into finite sets. Also let & =
{fe“w:Vnew, n< f(n) < f(n+ 1)}. Then the result from [CoVo] is as follows.

3.1. LEMMA. For an ultrafilter v the following are equivalent:

(i) v is a Q-point.

(ii) For some (every) dominating subfamily 9 of %, v contains a selector for every P,
(fe2). O

3.2. LEMMA. If P is “w-bounding and u is a Q-point then 1 | “u is a Q-point™.

(O It suffices to note that # N M is dominating in M[G]. [

3.3. CorOLLARY. If P is proper and ®w-bounding and if u is selective, then 1 |- “u is
selective”. [J

Our next result deals with w;-OK points.
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3.4. LEMMA. Let u be w;-OK.

(i) If P is {w,2°, w)-distributive then 1 | “u is w,-OK”.

(ii) If P is proper then 1 |- “u is a weak P-point”.

O (1) In M[G] let {u,: n € w) be a sequence in u. Back in M there is a sequence
{(W,:new) in u such that Vne w W, < U,: To see this first find F such that
dom F = w and, for all n, F(n) € [u]<® and U, € F(n). Then let W, = (F(n) (n € w).
Then if (V,:a € w,) is OK for {(W,: n € w), it is also OK for <U,: n € w).

(ii) In M[G] let {U,: n € w} < w*\{u}, and for each n pick U, € u with U, ¢ u,. In
M find {W,: n € ) inusuch that (U,: n € w)is a subsequence of it. Let {V: ¢ € w, )
be OK for {(W,: n € w). It follows readily that, for each n € w, {a: V, € u,,} is finite;
hence, for some o, V¥ n {u,new}=g. O

§4. Selective and nonselective P-points. In this section we construct P(w)-
indestructible selective and nonselective P-points. In [La] Laver constructed a
P(w)-indestructible selective ultrafilter u such that

1 |- “u is selective”.

By Corollary 3.3 this last fact is automatic. In §6 we shall need many different
selective ultrafilters, so we shall redo Laver’s construction with some extra care.
From now on we assume that CH holds and we fix an enumeration {<p,, f,>:
€ w, } of the set A from §2. In addition we let ¢, be a name for the real determined by
Porfyforacw,,ie. ¢, =¢, ;.

4.0. THEOREM. There are 2°* P(w)-indestructible selective ultrafilters on w.

[0 Let {P:a € w,} be an enumeration of the collection of partitions of w into
finite sets. Inductively we define families </, (« € w, ) of infinite subsets of w satisfying
the following conditions:

(i) 2o = {o}.

(ii) Each &, is an almost disjoint family of size w, (« > 0).

(iii) If & < B then </, refines o7, and, VA € o/, |{B € o: B =* A}| = w,.

(iv) Every A € &, , , is a selector for P,.

(v) Forevery A € &, ., thereis a g, < p, such that g, |- “¢, is constant on A4,”.

At successor stages we use Laver’s theorem to obtain for each A € <, an almost
disjoint family 4, of size w,; of subsets of A4 satisfying (iii)—(v); then we let o7, , ; =
(J{%,: A € o£,}. At limit stages we let .2/, be an almost disjoint family refining each
o5 (B € a) and such that for every sequence {A4;: f € a) with VB e a Ay € o/ and 4,
c*Ayif feyecathereisan A € o, suchthat Vfe a A =* 4;. Now let (A4,: 2 € ;)
be a branch through the tree ), ., &, i.e. Va € o, 4, € &, and if B € o € », then 4,
<* Ag. Then the filter u generated by {A4,: « € w, } is a P(w)-indestructible selective
ultrafilter. To see this, note that for every o € w,

da,., |F“®,is constant on A4, ,”

whence 1 | “u is an ultrafilter”. Also, u is selective: it is a P-point because it has a
linearly ordered (by <*) base, and it is a Q-point by construction. In this way we
obtain w{ = 2° such ultrafilters, one for each branch through ( J,.,, %. O

Our next aim is to show that there are many P(w)-indestructible P-points which
are not selective. We must make P-points that are not Q-points. To do this, form € @
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we let P, = [2™ — 1,2"*! — 1),and 2 = {P,: m € w}. Let

I= {A C w:limsup|A n P,| < w}
and I" = P(w)\I. We shall find an indestructible P-point u such that u < I*; in
particular, u will have no selector for 2 For this we need the following lemma.

4.1. LeMMA. Let p € P(w) and f: | ),co (P, n,n) —> 2 determine the real ¢, and let A
€ I*. Thenthereareaq < panda B = Awith B € I" suchthat q|“¢ | Bis constant”.

O To begin, fixmy < m; < m, < ---inwsuch that|4 n P, | > i-2'(i € ). Fori
e wsetl; =2™*1 — 1, Now thin out p to a condition g in P(w) such that, for every i,
|F| < i,where F;, = {g € l(p,1;,1,):if j < I;then a(j) € q(j)}. Note that,forany s € F,,
q | o decides the whole of ¢ [ [;,say ¢ | I, = ¢,. Fixi. As|An P, | >i-2, An P,
< I; and.|F)| < i, there is a set A; & A n P, such that |4;| > i and, for each 6 € F,,
¢, | A; is constant. Then q |-“¢ | A4; is constant”. Define a (name for a) real p by
requiring that for every i

q |F“p(i) is the value of ¢ | A,”.

Then find r < g and C < w infinite such that r|-“p [ C is constant”; let B =
Jicc4;. Then B< A, Bel® (ieC—|BnP,|>i) and r|-“¢[B is
constant”. []

It is now easy to prove:

4.2. THEOREM. There are 2°* P(w)-indestructible nonselective P-points.

[0 Much as in the proof of Theorem 4.0 we construct almost disjoint families .27,
(o € w,) of infinite subsets of w satisfying the following conditions:

(i) oo = {w}.

(i) Veew, VAe s, Ael”.

(iii) If & < B, then o/ refines 7, and, for every A € o, |{B € o;: B =* A}| = w,.

(iv) For every A € <, , there is a q, < p, such that g, |- “®, is constant on A”.

Fix an almost disjoint family % of size w; on w. At successor stages we use
Lemma 4.1 to obtain for an A € o/,an A’ < Aand q < p,suchthat A’ e I* and q |
“¢, A’ is constant”. Then we pick my < m; <m, <---inwsuchthat|4'n P, |>i
for each i. For each Ce¥ set Bo=|)icc(4' 0 P,). Then Bcel* and q |-
“¢, ! Bc is constant”. We let gz = q for each Be %, = {B.: C e ¢} and we set
Ayry = ){%: A € o,}. At limit stages we choose for each branch (A4;: f e a)
through { );., <% a set 4 as follows. Fix a sequence {o;:i € w) cofinal in a. For
each i pick m; such that |();<; A,, 0 Pyl = islet A = Jico(()j<iAs; O Pn,)- Then
Ael" and A =* 4; for f ea. We let o, be the collection of sets thus obtained.
As in the proof of Theorem 4.0 this provides us with w{*' = 2°! nonselective P-
points, each of which is indestructible. [

§5. An w;-OK point which is not a P-point. In this section we describe a P(w)-
indestructible ultrafilter which is w,-OK but not a P-point. We shall adapt a con-
struction by M. E. Rudin [Ru; C2] to our needs.

We shall need another strengthening of Laver’s theorem.

5.0. LEMMA. Let p € P(w) and let ¢ be a P(w)-name for areal. Let {A,:n € w} be
a family of infinite subsets of w. Then there are a q < p and a set A S w such that

(i) ql-“¢ | A is constant”, and

(ii) A N A, is infinite for infinitely many n.
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[0 We construct a sequence p = p, > p, = ‘- in P(w) and a sequence B, B,,...
of infinite subsets of w as follows: set p, = p and, given p,,, determine p, , ; < p, and
B, = A, asfollows. Enumerate I(p,,n,n)as {0;:i < l,},setr, = p,,set B, , = A, and,
givenr; with I(r;,n,n) = l(p,,n,n)and B, ;,findr;,, <r;and B, ;,, < B, ;asfollows:
first find ¢; < r;[ 0; and B, ;,, S B, ; infinite such that

4i|-“¢ I B, i+, is constant”,
and then define r;, , by

o Ja() o Ulr() I siselr(j),n)and s # a,(j)} if j<n,
rivr(J) = T .

a:(j) ifj=n;
then r;,, <r;and l(r;,,n,n) = l(r;,n,n). In the end set p,,, =r, and B,=B, .
Note that p,,,[ 6, <r;y, [ 06, =gq;fori <1, so that

Pn+1l 0 |-“® 1 B, is constant”

for every o € I(p, +,n,n), and hence p,,, | “¢ | B, is constant”.

Now define p,, by p,(j) = (ncw Pal(J) (j € ).

One readily checks that p, € P(w) and that I(p,,,n,n) = I(p,,n, n) for every n € w;
in the terminology of [Ba], p,, is the fusion of the sequence {({p,,n)>:ne w). Now
Po < Pu+1 for every n, so that

Do IF“¢ | B, is constant™.
Let ¢ be a name for the real determined by
Po I “¥(n) is the constant value of ¢ | B,”

for every n. Then find g < p, and B < w infinite such that g |- “y | B is constant”.
Let A=J,cpB,; then An A,2 B, is infinite for ne B, and q|-“¢ [ 4 is
constant”. [

We recall that {{p,, f,>: @ € w, } enumerates A and that ¢, is a name for the real
determined by (p,, f,»> (« € w,). Before we begin the construction let us outline the
strategy. Our ultrafilter u will be generated by a family {U,: « € @, }. Now if {V,:n
€ w} S u we can pick a, € w, such that U, < V, for n € w. It then suffices to find an
uncountable subset S of w; such that {U,:a € S} is OK for {U, : n € w}. To ensure
that this is possible we enumerate “w;, the set of functions from w to w,, as {s;:
d € w,} and we split LIM(w,), the set of nonzero limit ordinals in w,, into w,
uncountable sets {S;: § € w, }. In the construction we will make sure that, for every 6,
{U,: o € S5} is OK for {Uj,,): n € w}. We arrange things in such a way that, for every
d, rans; < min S;. We let 2 = {P,: m € w} be a partition of w into infinite sets. 2
will witness the fact that u is not a P-point; i.e. we make sure that Vo € w, |U, N P,,|
= o for infinitely many m. Finally, if « > 0 is a limit ordinal we fix an enumeration
{o;:i € w} of the set a such that if o € S; then o, = 54(0) and a; = s,4(1).

5.1. PROPOSITION. We can find sets {U,: o € w, } in w such that

1) {U,: o € w,} generates a P(w)-indestructible ultrafilter,

2) Ya € w, {m: U, n P,, #* (J} is infinite, and

3) Vo € w, {Ugsae S5} is OK for {Us,,:n € w}.

O For « € w, we shall find I, = w (infinite), A(x, m) = P, (infinite; m € w), and

B(a,m, y) = A(a,m) (infinite; y € 0, and m € w). We shall set U, = | e 1, A2, m)
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(o € w,). Then 2) is immediate. The sets will satisfy the following conditions:

(i) If feathenl, =*I,.

(i) B(a, m) = {B(a,m,y): y € w, } is an almost disjoint family.

(i) If B € o then either A(a,m) N A(f, m) =* &, or, for some y < a, A(a, m) =*
B(B,m,y).

(iv) For all a # 0 and all m there is a § € « such that A(a,m) =* B(f, m, «).

(v) For some q, < p,, 4, IF“¢,! U, +, is constant”.

(vi) For m € w\1,, A(a, m) = B(0,m, ).

(vii) If & > 0 is a limit and {m;: i € w} is the monotone enumeration of I,, then

me () I, and A(em)s () Aly,m,).
j<i+1 j<i+1

(viii) For every a, I, ,; < I,;and forme I, ;, A(x + 1,m) € B(o,m, a0 + 1).

It follows from (vii) and (viii) that {U,: « € w, } generates a filter 4, and (v) guaran-
tees that u is in fact a P(w)-indestructible ultrafilter. To ensure that, for every 6,
{U,: « € S5} is OK for {U,,,: n € w}, we have to exercise some extra care. For a € w,
and me w set K(a,m) = {p € o: A(x,m) =* A(,m)}. The claim is that K(a,m) is
finite. Given o and m, fix B as given by (iv). Then K(x,m) = {$} U K(B,m). [The
inclusion 2 is immediate. For < let y € K(«, m); then A(a, m) =* A(f,m) N A(y, m),
so A(B,m) N A(y,m) #* . If B <y < a then A(y,m) =* B(f, m,¢) for some ¢ <y,
so that A(a,m) N A(y,m) <* B(B,m,«) n B(B,m, &) =* &, which is a contradiction.
So either y = B or y < B, in which case A(B,m) <* B(y,m,&) =* A(y,m) for some
& < B, so thaty e K(B,m).] As K(0,m) = & for every m, it now follows by induction
that K (&, m) is finite for every a and m.

We define, for every a, m and 9,

Ké(a7 m) = K((Z, m) N S&a
ké(aa m) = |K6(a, m)la
ls(a, m) = max{l: Vi < I,s4(i) € K(a, m)}
(in case ran s; < K(x,m) we put l;(o,m) = 00). We make the following additional

requirements:
(ix) If o« € S then

Vmel, (o, m)> ks(ot,m).
(x) If « € w, and ran s; < « then

lim I5(ec, m) — kg(ot, m) = 0.
mels

Let us first check that this works. Let d € w, and o; < **+ < o, in S5. We show first
that for everyme I,

,él A(d,-, m) s* A(Sé(n)a m)

If (-1 A(a;, m) =* J this is clear; in the other case we conclude that {oy,..., 0,1}
< K;(a,,m) (by (iii)), so that ks(a,,m) > n — 1. But then by (ix) we have l;(a,, m) > n,
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so that s4(n) € K(a,,m) and hence
n
m A(aia m) = A(ana m) E* A(sé(n)a m)
i=1

In addition (vii) implies that, for all but finitely many m € I, , A(,,,m) S A(s5(n), m).
We conclude that (\i-, U, <* U, ,, as required. It remains to perform the
construction.

At every stage, once A(x, m) is found, the family %(«, m) can be chosen arbitrarily;
also, once I, is found, we set A(a, m) = B(0, m, &) for m € w\ I, to fulfill (vi). We begin
by setting A(0,m) = P,,(m € w)and I, = w. Going from a to  + 1, we apply Lemma
5.0 to the pair {p,,f,> and the family {B(x,m,a + 1): m € 1}, to obtain an infinite set
L., < L, infinite sets A(x + 1,m) < B(a,m,a + 1)(m e I,,,), and g, < p, such that
g, IF“® 1 U, is constant”. One can readily check that (i), (iii) and (iv) are fulfilled.
To check (x), note that Ky(a + 1,m) = Ky(a, m) U {a} for every é and every m, so that
always ks( + 1,m) < kz(o,m) + 1; hence (x) is no problem. Next assume that « > 0
is a limit ordinal. Enumerate the set {6: min S, < a} as {d;: i € w}; this is possible
because these sets S; (6 € w, ) are pairwise disjoint. Moreover, make sure that « € S, .
We determine I, = {m;:i € w} as follows: assume that m; is found for j <i; to
determine m;, set ¢; = max{8;: j < i + 1} and pick m; € [)j<;+11,, so big that:

—m; > m;forall j <i,

—for all j < i, I; (e;,m;) — ks (e;;m;) > i + 2, and

— ﬂ j<i+1 A, m;) #* & (an easy check using (vii) and (viii) shows that this is
possible).

Now set A(a,m;) = B(g;, m;, ) N ﬂ j<i+1A(a;,m;). It is straightforward to check
(i), (iii) and (iv); condition (vii) is fulfilled by construction. For (ix) note that for
every m;

Ls (o, m;) — kso(o,my) = L5 (€5,m;) — Kgoe,m) + 1>+ 121,

because K (o, m;) S K (g:,m;) U {&;} and Is (&, m;) = I5(€; ;). Likewise if ran s,
< o then lim,, ¢ nes,ls(@,m) = 00, so if minS; > a there is no problem. If min
S; < a,say 6 = §;, then for i > j

Is; (0 m;) — ks, m;) > ls (&, m;) — (kéj(si’mi) +1).

This finishes the construction and the proof of the proposition. [J

To summarize we state

5.2. THEOREM. There is a P(w)-indestructible ultrafilter which is an w,-OK point
but not a P-point. [J

In fact we can find 2% such ultrafilters by taking, at successor stages, instead of one
set I, , an almost disjoint family of size w, of such sets; at limit stages we would
have to take care of all possible branches through the tree of I,’s much as in the
proof of Theorem 4.0.

§6. An unbounded w,-chain in the Rudin Frolik order. In this and the next section
we shall consider the Rudin-Frolik order of w*. We shall give here its definition and
a few of its basic properties. For details we refer to [Ru] and [BuBu].

6.0. DEFINITION. Let u € w* and let X = {x,:n € w} < Pw be relatively discrete,
so that X = BX ~ Pw. We denote by Z(X, u) the copy of u in X\ X, with respect to
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the given indexing of X. So, for A < w, 4 € Z(x,u)iff {n: A € x,} € u. Conversely if
ve X\X then Q(X,v) is the ultrafilter of which v is the copy, ie., for 4 S w,
AeQ(X,v)iff ve {x, ne A}. For u, ve w* we define u <gpv iff there is a discrete
X < Bw such that v = X (X, u). We call <z the Rudin-Frolik order on w*. [

One checks readily that <gzp is reflexive and transitive; <gp is not antisymmetric.
We say u <gp 0 iff u <ppv but not v <gpu. Then <y is the strict version of <gg.

6.1. DerINITION. Two ultrafilters u and v on w are equivalent (in symbols u ~ v)iff
there is a permutation f: w < w such that f(u) =v. 0O

6.2. Facts on <gg. a) If u <gpv and v <gpu thenu ~ v.

b) u <gpv iff there is a discrete X = w* such that v = 2(X, u).

o) If ue w*and X, Y < Pw are discrete then (X, u) <gp Z(Y,u) iff {n:x, <gryn}
€ u. Hence 2(X,u) ~ Z(Y,u) iff {n:x, ~ y,} eu.

d) If u,0,w € @* and u,v <gpw then u <gpvor v <gpu. [

In [Bu2] Butkovi¢ova constructed an unbounded w, -chain with respect to <ggin
w*. In this section we shall see that this w,-chain can be constructed so that it
consists of P(w)-indestructible ultrafilters, moreover in any generic extension by
P(x) the chain will still be unbounded.

We shall need the following lemmas.

6.3. LEMMA. Let P be an {w,2°, w)-distributive poset and let X U {u} be a set of
P-indestructible ultrafilters with X discrete. Then v = X(X, u) is also P-indestructible.

[J Let pe P and let t be a P-name such that p |F7: w —» 2. Each x,€ X is P-
indestructible, so there is a P-name y such that

p |-y is a function, dom ¢ = w, Yn € w(y(n) € x,, N 7 [ y(n) is constant)”.
Then there are a ¢ < p and a function F such that dom F = w, Vn € w F(n) is a finite
subset of x,, and Vn € wq |- “y(n) € F(n)”. For ne w let U, = () F(n); then U, € x,
and q |-“U, < y(n)”, so that q |- “t | U, is constant”. Let ¢ be a P-name for a real
such that for every n

q |- “o(n) is the constant value of 7 [ U,”.

Then find r < g and U € usuch thatr |- “g | U is constant”. Set V = U,,EU U,; then
Vevandr|-“t1Visconstant”. [

One can also check directly that v in fact generates the (X, u) of the extension.

6.4. LEMMA. Let P be an “w-bounding poset and let u,v € w* be P-indestructible Q-
points. Thenu ~ v iff 1 |-“u ~ v”.

[0 One direction is trivial. For the hard direction assume that y is a P-name such
that 1|-“y is a permutation of w and y(u) = v”. Find p € P and g: w - o strictly
increasing such that Vnew p|-“n + y(n) + y"'(n) < g(n)”. Let P = {[0,9%(0)),
[4%(0),9*(0)),...}. P is a partition of w into finite sets. Let U € u be a selector for the
partition. Let Uy = U N {Jmeow[9*7(0),9*™*2(0)] and U, = U\U,. For definite-
ness assume Uy € u. Let ne U, and let m = m, be the unique number for which
g*"(0) < n < g*"*2(0). Then p |-“g*"~1(0) < y(n) < g*"**(0):

—p -“n < g*"*2(0)", 50 p |- “p(n) < g(n) < g*"*3(0)"; and

—if, for some q < p, q |- “y(n) < g*™ 1(0)”, then

ql-“n=y"1y(n) < g(y(m) < g*™(0)",
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a contradiction. Moreover if n < n’ then m = m, <m, = m’ and so 4m + 3 < 4m’
—1 and g*"*3(0) < g*™ " 1(0). For me w let Q,, = (¢g*" 1(0), g*"*3(0)). Then
{Q,: m € w} is pairwise disjoint. Let V = { J,cy,Qm,- Then g |-“VYn e Uy y(n) € Q,,
cV”ieql-“y[Us] = V”. Buttheng |-“IW ev: W < V>, and so V € v. Now let
V, € v be a selector for {Q,, :ne Qy}. Let U, = {n: ¥V, n Q,,, # &}. Then q |-“U,
=y [V,]”, so that U, € u. Now define h: U, — V, by h(n) = the pointin V5 N Q,, .
Also, for n € U,, q |- “y(n) is the point in V; n Q,, 7, so that g |-“h = y | U,” and so
hw)=v. O

Now we are ready for the main result of this section.

6.5. THEOREM. There exists an w,-chain {u,: o € w,), with respect to <gg, of
P(w)-indestructible ultrafilters. Moreover, {u,:o € w,) has no <gp-upper bound,
neither in the real world nor in any generic extension by P(x) (x = w).

O From Theorem 4.0 we obtain 2! P(w)-indestructible selective ultrafilters. By
CH there are only w, permutations of w. Fix an almost disjoint family & = {4,: «
€ w,} on w, and choose for each « € w,; a P(w)-indestructible selective ultrafilter v,
such that A, € v, and a # B — v, + vs. Note that V = {v,:a € w,} is relatively dis-
crete. Write V = | J{D(a, n): « € w;,n € o} with {a,n) # {B,m) — D(a,n) N D(B, n)
= . Moreover write D(a,n) = {d(a, n,i): i € w} (each D(a, n) is countably infinite).
Now every selective ultrafilter is <gp-minimal, so that for any {«,n) and {B,m}

{izd(o,n,i) <gpd(B,m,i)} = &,

and by Lemma 6.4 this is also true in any generic extension by P(x) (k > w).

We construct for every o € w, a countable discrete set X, = {x(«,n):n € w} of
ultrafilters as follows:

Set X, = D(0,0). Given X, let x(a + 1, n) = Z(D(« + 1, n), x(2, n)) (n € ) and let
X,+1 = {x(a + 1,n): n € w}. If a is a limit, fix a strictly increasing cofinal sequence
{o;:i € w)in a with aq = 0. Set Z, = w and, given Z;, let

Zivy={neZ:n>iandVj < i, x(o;,n) <gpx(j+1,n)}.

Then for ne Z\Z;,, set x(a,n) = Z(D(a, n), x(a;,n)), and X, = {x(a,n): n € w} of
course. By Lemma 6.3 every x(a, n) is P(w)-indestructible. In the real world and in the
generic extension(s) by P(k)(k > w), the set {x(a,n):a € w,, n € w} satisfies the
following conditions:

(i) If B € « then {n: x(B, n) <gg x(a,n)} is cofinite.

(i) If o is a limit, i € w, ne Z\Z;,, and o; < B < o, then x(«, n) and x(f,n) are
<gg-incomparable.

(iii) For every a € @, and n € w, the set {B € a: x(B, n) <gr x(, n)} is finite.

The proof of (i) is straightforward; one should note that if v = 2(X,u) and all
ultrafilters are indestructible then 1 |- v = (X, u). The proof of (ii) uses 6.2 except in
the case when x(B, n) = Z(D(B, n), x(a;,n)), but then we know that in the real world
and in the extension {i: d(a, n,i) and d(B, n,i) are <gg-comparable} = (¢, so that also
x(B,n) and x(a,n) are <gp-incomparable, by 6.2. Finally, (iii) follows from (ii) by
induction.

Now let u be any P(w)-indestructible ultrafilter, and set u, = 2(X,,u) for « € w;.
Each u, is indestructible, and the following arguments work in the real world and the
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extension. By (i), if § € o then uy <gpu,. Now assume v = Z(Y, u) is an upper bound
for {u,: o € w,}. Then, for every a € w,, {n: x(o,, n) <gry,} € u. It follows that, for
some n, {a: x(a, 1) <gr y,} is uncountable (w, is uncountable in the extension). Let o
be the wth element of this set. It then follows that {f € a: x(B,n) <gg x(a,n)} is
infinite, contradicting (iii). Thus, {u,: « € w,} has all required properties. [

§7. A point with o predecessors. An ultrafilter can have 0,1,2,...,® or 2° <gp-
predecessors [BuBu]. The previous sections give us ultrafilters of character w; with
0 and 2 predecessors: for 0 they can be selective, P-point, or weak P-point; for 2%,
take u,, from §5. By [Bul] there are 2 ultrafilters between {u,: n € w} and u,,. It is
also easy to find ultrafilters with 1,2,... predecessors: pick one with 0 predecessors,
call it x, take a countable discrete set X of copies of x and set u, = x and u,, ,
= X(X,u,) (n € w); then u, has exactly n predecessors. If we take X to be P(w)-
indestructible and selective, then u, will also have n predecessors in any generic
extension by P(x) (x > w).

We shall construct a P(w)-indestructible ultrafilter with exactly w predecessors,
both in the real world and in the extension.

To begin, let u be P(w)-indestructible and selective (this to insure that 1 |- “u has
no <gp-predecessors”). Let %, = {Py;: j € w} be a partition of w into infinite sets,
and for each j € w let x,; be a copy of u on P,;. Inductively let

X = {x;:j € 0},
Xiv1,; = 2(Xi, xo5) = Z(Xo, Xyp)s
Piyy;= U{P,-,:lePoj} = U{Pozile Py}.
By Lemma 6.3 each x;; is an indestructible ultrafilter; moreover P; € x;; and {P;;:
J € w} is pairwise disjoint for every i. We shall find an indestructible v € ()., X;
such that {Q(X;,v):i € w} has no <gg-lower bound in this and the other world.

It follows, since u was <gg-minimal to begin with, that {Q(X;,v): i € w} is exactly
the set of <gp-predecessors of v. It suffices [S,, E] to ensure that whenever Y <
(JiewX; is discrete and v e Y there is an i € w such that ve Y n X;. In [S,] and
[BuBu] this was accomplished by “simply” taking care of all such subsets of
(JicwX;. We have to take care of new subsets of (JicoX; too. To do this assume
Y € (JicoX; is discrete and that v¢ Y n X, for every i. Pick V;ev such that
V*n (YN X,) =g (foriew).If (Vi e ) is not from the real world, we can find
{W;; i € w) in the real world such that Vi e w W, < V,. We arrange it so that there is
then one W € v, from the real world, such that W* n X; € W} n X;. This W then
satisfies W* n Y = (J,so thatv ¢ Y. Werecall that ({p,, f,): « € w, ) enumerates A
and that ¢, is a name for the real determined by {p,, f,)>. We let {s,: « € w,, o a limit}
count “w, in such a way that always ran(s,) € a. Fix a bijection ¢:w & v X .

We find {V,: @ € w,} such that for every a € w, the following conditions hold:

(i) The filter %, generated by {V;: f < o} satisfies

VFe FNiew {jF e x;}isinfinite.

(ii) There is a g, < p, such that g, |-“®,| V.., is constant”.

(iii) If awis a limit then Vie w V¥ n X, = V¥ n X,.

By (ii) the filter v generated by { V,: « € w, } is a P(w)-indestructible ultrafilter; by (i)
ve ﬂ,-ew)?i; and by (iii) and the above argument {Q(X;,v): i € w} has no <gg-lower
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bound in this or the other world. We set ¥, = w. Given {V;: f < «}, find V,,, as
follows. Much as in the proof of Lemma 5.0, we can find a g < p. and Uj; € x;; for
every i, j such that g |-“¢, [ U; is constant” (when constructing p, ., from p;, take
Bij i1 € x4, in the end q = p,,).

Next let {F;:i € w} enumerate {Vj: f < a}. Let J; = {je w: (),;F € X} (iew).
By assumption each J; is infinite. Define a real by g |- “y(n) = the constant value of
¢, on Uy,”. Using Lemma 5.0, find q, < g and 4 < w such that 4 FYT Ais
constant” and the set [ 4] N {<i,j): j € J;} is infinite for infinitely many i € w. Set
Voor = U{Ud,(,,): ne A}; then q, | “¢,| V.., is constant” and, for infinitely many
(and henceforall)i, { j: V, 4y 0 (< F; € x,} is infinite. Finally, if o is a limit let {F;: i
€ w} enumerate {V;: f € a} in such a way that always F,, = Veurm- Set G; = (Vi< 2:Fy
(n € w). For i € w determine W, as follows. The set { j: G; € x;;} is infinite and X, , is
nowhere dense in X;\ X;, so let H; < w be infinite such that G; x;; for j e H; and

Xion{xgjeH}=@.
Next set G = G, n | J{P;: j € H;} and inductively
Gi*' = Gin U{R’—(l+ 1),j° Gie xi—(l+1),i}-

Then set W, = Gi. In the end let ¥, = | );., W;. Clearly H, = {j: Va0 G e x;}, so
(i) is fulfilled. For (iii), note that if k > i then W¥* n X, = & and if k < i then W¥ n
Xi =GN X, S Vo4yn X, Hence V¥ N X, < VEw N X, for every k.

§8. A summary. Using the results from §§3—7 we can now state our consistency
result.

8.0. THEOREM. It is relatively consistent with ZFC that 2° is arbitrarily large and
there are ultrafilters of character w, of the following types:

a) selective,

b) P-point but not selective,

¢) w,-OK but not P-point,

d) having 0,1,2,... <gp predecessors,

€) having 2° <gp-predecessors, and

f) having exactly w <gg-predecessors. Moreover

g) There is an unbounded <gg-chain of cofinality w, consisting wholly of
ultrafilters of character w,.

O Start with a model of CH, take « as desired and force with P(x). Then Theorem
4.0 gives a); Theorem 4.1 gives b); Theorem 5.1 gives c); d) was noted in §7, as was e);
f) was established in §7; and for g) take {u,: « € w,} from §6. The chainis X = {x: 3a
€ W, x <gpi,}. Then X is unbounded and, since by [BuBu] if u <gp? then
x(w) < x(v), every element of X has character ;. [

As noted in the Introduction, a) and b) were obtained before in various ways.
Kunen [Ku3] showed that if there is a selective ultrafilter of character w, then there
is an ultrafilter as in e).

§9. Some questions and additional remarks. We have constructed a variety of
P(w)-indestructible ultrafilters. A question that comes to mind is “Is every ultrafilter
P(w)-indestructible?” The answer is negative. In fact Kunen [Ku3] pointed out to
me that there are always ultrafilters such that, no matter how a real is added to the
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world, they do not remain ultrafilters after that. So already one Sacks real destroys
some ultrafilters.

As noted in the Introduction, many of the known ultrafilters of character less than
2% are selective, or at least P-points; the others are usually constructed using
something selective as a starting point. The same is true for the ultrafilters con-
structed in this paper. In §5 it is practically unavoidable that a selective ultrafilter
or a P-point is constructed along the way: {I,:« € w,} generates a P-point. This
leads to the following question posed first by Bukovsky:

9.0. QUESTION. a) Can there be an ultrafilter of character less than 2¢ which has
nothing to do with P-points? or even:

b) Is it consistent that there are no P-points, yet there is an ultrafilter of character
less than 2?

The answer to this question with “selective” instead of “P-points” is positive: First
recall thatd = min{|D|: D < “w A Vg € “w3f € D:g < f} [vD]. Now in [BISh] it is
shown that in the model obtained by iterating rational perfect set forcing w, times
(starting with CH) one has d = 2° = w,, and for every x € w* there is a finite-to-one
f € “o such that y(f(x)) < d (so x(f(x)) = w,).

So there are many ultrafilters of character less than 2¢. Now in this model there
are no selective ultrafilters: if x is selective then y(x) > d and if f € “w then either
f(x) € wor f(x) ~ x. This model definitely does not answer Question 9.0: for x € w*,
x(x) = w, iff x is a P-point.

A consequence of Lemma 6.3 is that if Q is either P(w) or P, (an a-stage iteration
of PF), then I = {u € w*: u is Q-indestructible} is a (by CH nonempty) countably
compact subspace of w*. What, if anything, can be said about this space? By
[Bala], I contains all selective ultrafilters in case Q = P,. A final question is

9.1. QuesTION. Can we do the same things with w,,®s,...? The approach of
this paper will not work immediately: if u were a P(x)-indestructible ultrafilter of
character w,, then after forcing with P(x), 2 would be collapsed to w, (because P(x)
contains Fn(k, 2, w,)), so that in the extension u would have character w, anyway.

I would like to thank the referee for spotting many errors in the first version.
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