What is ‘Finite’?

K. P. Hart

When you search the website of the Dutch Science Agenda
(https://vragen.wetenschapsagenda.nl/) for the keywords ‘oneindig’
and ‘oneindigheid’ (infinite and infinity) you will get more hits than for
‘eindig’ and ‘eindigheid’( finite and finiteness): 25 against 6.
Apparently people find the notion of the infinite more difficult,

interesting, fascinating, ..., than that of the finite.

Mathematically the difference need not be so large: ‘infinite’ is

‘not finite’ and ‘finite’ is ‘not infinite’, so if you know one you know the
other. The question then is: “What is ‘finite’?” Once we have an answer
to that question we also know what ‘infinite’ is: just put ‘not’ in front of
that answer. Unfortunately (or maybe fortunately) it is not quite that
simple; it will turn out that what we want from both notions makes it

difficult, at first, to make them simply each others negations.

The dictionary

It is always interesting to look in a dictionary for the ‘normal’ meaning of
a mathematical term; often that will also give an idea why students find it
hard to get to grips with a concept: that ‘normal’ meaning quite often has no
bearing on what mathematics wants to say.

I use The Chambers Dictionary ([1]) when doing crosswords, so I looked there
for definitions of ‘finite” and ‘infinite’.

finite adj having an end or limit; subject to limitations or conditions, opp to
infinite. [L. finitus, pap of finire to limit]

infinite adj without end or limit; greater than any quantity that can be
assigned [maths]; extending to infinity; vast; in vast numbers; inex-
haustible; infinitated (logic)

infinitate vt to make infinite; to turn into a negative term (logic).

So, the first definitions of ‘finite” and ‘infinite” are each other’s negations but
then there is a slight divergence. ‘Finite’ is the opposite of ‘infinite’, but not
vice versa; also, ‘infinite” has more variety than finite. I included the verb
‘infinitate’ because I had not seen it before and because it has a nice logical
constant as well.

There is one noteworthy bit among the definitions of ‘infinite”: the phrase
“greater than any quantity that can be assigned” comes more or less straight
out of Euclid’s Elements:

Book IX, Proposition 20. The primes are more than any assigned multitude
of prime numbers.

Nowadays we formulate this as: “There are infinitely many prime numbers.”

Mathematics

The problem with dictionary definitions is that they use words that have their
own definition and quite often looking up those definitions will lead you to
others and, ..., after a while you find yourself going round in circles. The
definition of ‘infinite’ that goes back to Euclid contains ‘greater’, ‘quantity’,
and ‘assigned’. We need to give meaning to these when we want to make the
definition unambiguous.

What we will do is define “finite” in such a way that ‘infinite’, as its negation,
will let Euclid’s formulation make sense.

Before we do that first an aside: in Analysis you sometimes read about ‘finite
intervals’; those are simply intervals with real numbers as limits. For example
[0,1] and (2,10229] are finite intervals, but not (0,—). This corresponds
to the dictionary definition of ‘finite’ but we will not discuss this type of
finiteness because it does not occur that often and because these intervals do
have an infinite number of elements.

Finite sets

So what is the definition of ‘finite set”? A bit anticlimactic maybe, but a
set X is finite if there are a natural number n and a bijection f : n — X.
Before anyone panics, “a bijection between a set and natural number?”: in
Set Theory we define N in such a way that n = {i € N : ¢ < n}. Thisis
because we want to keep things a simple as possible and this is indeed the
simplest possible way to define natural numbers set-theoretically, see [5]. So,
for example: 0 =0, 1 = {0}, 2 ={0,1}, ..., 7={0,1,2,3,4,5,6}, ...; in
general: n +1=nU{n}.

It is a good exercise to show that there is at most one such n.

Exercise. Prove, for every n, that there is no bijection between n and n + 1.

The consequence is now that we can define for finite sets what the number of
elements is: the unique n for which the desired bijection exists.

Infinite sets

Now we also know what an infinite set is: one for which no n as in the
definition of ‘finite set’ can be found. That is quite negative; in fact you
are basically empty-handed when your set is infinite: you have no n and no
bijection.

What you do have is lots of injections: if a set X is infinite then you can
prove, by induction, that for every n € N there is an injection from n into X.
This may seem completely self-evident — “just pick some points” — but it
takes a bit of work to turn those words into a proper proof, and we will see
later why this might need some work.

For now we note that Euclid’s proof of his theorem, that you can look up
on-line, see [3], shows indeed that the set P of prime numbers is infinite
according to our definition: it shows that for every n no injection f : n — P
is surjective.

Alfred Tarski

In [6] the Polish mathematician Alfred Tarski made a thorough investigation
of the notion of a finite set. One thing he asked himself was whether you
could definite finiteness without referring directly to natural numbers.



Figure 1: Alfred Tarski

The answer was “yes, that is possible”. Nowadays we call a set X Tarski-
finite is the following holds: every nonempty family A of subsets of X has a
maximal element. Note: ‘maximal’ means that there is no larger element (and
that is not the same as being the largest element). For example in the family
{{z} : © € X'} every member is maximal, but there is no maximum (if X has
more than one element).

Exercise. Prove, by induction, that every natural number is Tarski-finite (and
hence that ever finite set is Tarski-finite).

Once you have done this exercise you should, of course, do the following one
too.

Exercise. Prove that every Tarski-finite set is finite.

Here is a hint: let A be the family of all finite subsets of X. It is non-empty
because ) € A. Next prove that a maximal element of A must be a maximum
and indeed that it must be X itself.

This characterization of finiteness, which we might also call The Maximality
Principle, is very useful in mathematics, especially in Combinatorics.

Richard Dedekind
One of the first mathematicians who sought to define finite and infinite sets
was Richard Dedekind. His most famous definition is from [2]. It even made
it into the dictionary:

infinite set n (maths) a set that can be put into one-one correspondence
with part of itself

In terms of maps: a set X is Dedekind-infinite is there is an injective map
f : X — X that is not surjective. This property has two nice equivalences,
especially number 2 is something that we would like to be true about infinite
sets.

Exercise. Prove that the following three statements are equivalent.

1. X is Dedekind-infinite
2. there is an injective map f: N — X
3. there is a bijection f : X — X U {p} for (some) p notin X

Now, by definition, a set X is Dedekind-finite if every injective map f : X —
X is surjective.

Exercise. Prove, by induction, that every natural number is Dedekind-finite
(and hence that every finite set is Dedekind-finite).

Figure 2: Richard Dedekind

We now have a problem; our notion of ‘finite’ is very practical: a finite set
comes with an enumeration f : n — X and we can use that in our proofs.
Similarly a Dedekind-infinite set comes with an injective map f : N — X,
also quite handy to have.

Unfortunately, ‘(in)finite’ is not the same as ‘Dedekind-(in)finite".

It seems easy to prove that every infinite set is Dedekind-infinite: pick a
point zp, the set is infinite so there is another point x1, there is another
point x2, ..., and so on. The map that send n to x,, is injective.

Well, ..., no; there is no way to turn the “..., and so on” into a formal set-
theoretic proof that involves only finitely many steps. By ‘formal proof’ I mean
a proof as described in the course Logic (TW3520) that you can take every year
(recommended).

To give a proof in finitely many steps you need an extra assumption, the Axiom
of Choice ([7]).

Cyclic permutations

In the foreword to the second edition of [2] Dedekind mentioned another
definition of ‘finite’: a set X is Dedekind*-finite if thereisamap f: X — X
such that if A C X is such that f[A] C Athen A=0or A=X.

It is not hard to show that natural numbers are Dedekind*-finite: think of
cyclic permutations.

On the other hand: if X is Dedekind*-finite then X is in fact finite, and the
map f is indeed a cyclic permutation.

Exercise. Prove this. Hint: take some x € X and prove that « = f™(x) for
somen > 1.

So, Dedekind had two definitions of “finite’ (and of ‘infinite’) and he tried quite
hard to prove that they were equivalent but did not succeed. If you want to
know why then you should study [4].
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