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Abstract. We present examples of realcompact spaces with closed subsets

that are C∗-embedded but not C-embedded, including one where the closed
set is a copy of N.

Introduction

The purpose of this note is to provide some examples of realcompact (but not
compact) spaces that have closed subspaces that are C∗-embedded but not C-
embedded, and in particular an example where the closed subspace is a copy of the
discrete space N of natural numbers — what we henceforth call a closed copy of N.

The reason for our interest is that we are not aware of any such examples. The
examples in [5], for instance, of C∗- but not C-embedded subsets are not all closed
and when they are closed the pseudocompactness of the ambient space makes C-
embedding impossible.

The only explicit question of this nature that we could find is in the paper [7,
Question 1], which asks whether C∗-embedded subsets (not necessarily closed) of
first-countable spaces are C-embedded. In that case there is an independence result:
there is a counterexample if b = s = c, and in the model obtained by adding
supercompact many random reals the implication holds, see [1].

The more specific question of having a closed copy of N that is C∗-embedded
but not C-embedded arises from an analysis of their position in powers of the real
line; see Section 2 for an explanation.

It is clear that our examples should be non-normal Tychonoff spaces. After
some preliminaries we briefly discuss two classical examples, the Tychonoff and
Dieudonné planks, and introduce a further plank J.

The latter is pseudocompact but we modify it in two steps. The first step yields
a plank that is neither pseudocompact nor realcompact, and the second step gives
us our first example.

Our second example is constructed in Section 5 and it contains a closed copy
of N that is C∗- but not C-embedded.

1. Preliminaries

We follow [4] and [5] as regards general topology and rings of continuous func-
tions. As is common C(X) and C∗(X) denote the rings of real-valued continuous
and bounded continuous functions respectively.

A subset A of a space X is C-embedded if every continuous function f : A→ R
admits a continuous extension f̄ : X → R. It is C∗-embedded if every bounded
continuous function f : A→ R admits a bounded continuous extension f̄ : X → R.

We define a space X to be realcompact if it can be embedded into a power of the
real line as a closed subset. The most useful characterization for this paper is that
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every zero-set ultrafilter with the countable intersection property has a non-empty
intersection, see [4, Theorem 3.11.11].

Planks. As noted above our examples will be non-normal Tychonoff spaces. Non-
normal because we need a closed subset that is not C-embedded and Tychonoff
because that is part of the definition of realcompactness.

There are various examples of such spaces, such as the Tychonoff plank T ([9]
or [8, Example 87]), and the Dieudonné plank D ([2] or [8, Example 89]).

Both start with the product set X = (ω1 + 1) × (ω0 + 1) and take the subset
P = X \ {〈ω1, ω0〉} as the underlying set of the space.

In each case P has the subspace topology where X has a product topology
induced by topologies on the factors.

For T one takes the order topologies on both ordinals. For D one enlarges the
order topology of ω1 + 1 by making all points of ω1 isolated.

We shall consider a third variation in Section 3 below.

2. Context

To begin we have the following proposition, which may be well-known, but bears
repeating here because it shows that if one has a non-C-embedded copy of N in
a realcompact space then that copy contains many infinite subsets that are C-
embedded.

Proposition 2.1. Let X be realcompact and A a subset whose closure is not com-
pact, then A contains a countably infinite subset that is closed, discrete and C-
embedded in X.

Proof. Take a point x0 in βX \ X that is in the closure of A. Apply [4, Theo-
rem 3.11.10] to find a continuous function f : βX → [0, 1] such that f(x0) = 0
and f(x) > 0 if x ∈ X. Because x0 is in the closure of A we can find a sequence
〈an : n ∈ N〉 in A such that 〈f(an) : n ∈ N〉 is strictly decreasing with limit 0.

The set N = {an : n ∈ N} is closed and C-embedded in X. It is closed as a
locally finite set of points. If g : N → R is given then we can take a continuous
function h : (0, 1] → R such that h(f(an)) = g(an) for all n. Then h ◦ f is a
continuous extension of g. �

The space in Section 5 illustrates this proposition quite well: one can point out
very many infinite C-embedded subsets of the non-C-embedded copy of N explicitly.

This proposition also shows why the initial planks in Section 3 are not realcom-
pact: there are not enough C-embedded copies of N.

Closed copies of N in other spaces. Here we collect a few natural questions
that arise when one considers C∗- and C-embedding of closed copies of N.

Suppose one has two closed copies, N1 and N2 say, of the space of natural numbers
in a Tychonoff space X.

(1) If N1 and N2 are C-embedded is their union C-embedded?
(2) If N1 and N2 are C∗-embedded is their union C∗-embedded?
(3) If N1 is C-embedded and N2 is C∗-embedded is their union C∗-embedded?

Questions (1) and (3) have positive answers.
For question (3) one uses a continuous extension f : X → R of a bijection

between N1 and N to obtain a discrete family {Ox : x ∈ N1} of open sets with
x ∈ Ox for all x ∈ N1. Then, given a bounded function g : N1 ∪ N2 → R one first
takes a bounded extension ḡ : X → R of g � N2 and then modifies ḡ on each Ox to
obtain an extension of g.
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The argument for question (1) is similar but easier because one can find a single
discrete family of open sets that separates the points of N1 ∪ N2.

A counterexample to question (2) can be obtained by taking Katětov’s example
of a pseudocompact space with a closed C∗-embedded copy of N, see [6] or [4,
Example 3.10.29]. The example is K = βR \ N∗, and the copy of N is just N itself.
Take the sum of two copies of this space, K×{0, 1}, and for every x ∈ K\R identify
the points 〈x, 0〉 and 〈x, 1〉. The copies N×{0} and N×{1} are both C∗-embedded
in the resulting quotient, but their union is not.

Below we shall show that question (2) also has a negative answer in the class of
realcompact spaces.

Closed copies of N in powers of R. The discrete space N is realcompact, hence
it admits many embeddings into powers of R as a closed and C-embedded set.

The specific question from the introduction is equivalent to the question whether
there is a closed copy of N in some power of R that is C∗-embedded but not C-
embedded. Indeed the latter is a special case of the former and a positive answer to
the former answers the latter by embedding the example as a closed C-embedded
copy into some power of R; the copy of N is then not C-embedded in that power.

The difference between C- and C∗-embedding manifests itself also in the way
certain maps can be factored through partial products.

Assume first that N is C-embedded in a power of R, say Rκ. Then there is a
continuous function f : Rκ → R such that f(n) = n for all n ∈ N. It is well known
that f factors through a countable subset of κ: there are a countable subset I
of κ and a continuous function g : RI → R such that f = g ◦ π, where π is the
projection onto RI , see [4, Problem 2.7.12]. Then the projection π[N] of N in RI
is C-embedded and we see that every function from N to R has an extension that
factors through the partial power RI .

Now assume N is C∗-embedded but not C-embedded in Rκ. Then every bounded
function from N to [0, 1] has a continuous extension to Rκ. Such a continuous
extension will then factor through a partial product with countably many factors
but the set of factors will vary with the function.

Indeed, assume that there is a single countable set I such that every bounded
function f : N→ [0, 1] has a continuous extension that factors through RI . Apply
this with the function f(n) = 2−n; using a factorization f̄ = g ◦ π, as above, of an
extension f̄ of f that the projection π onto RI is injective on N and that π[N] is
relatively discrete in RI .

We also find that π[N] is C∗-embedded in the metric space RJ , and hence closed.
But then π[N] is C-embedded in RJ and N is C-embedded in Rκ.

Using the plank A from Section 5 we obtain such a copy of N in a power of R.
The standard embedding of A in the power RC(A) yields a closed C-embedded copy
of A. The right-hand side R is a closed copy of N that is C∗-embedded in A and
hence in RC(A), but not C-embedded in RC(A).

This then suggests the following question.

Question 1. What is the minimum cardinal κ such that Rκ contains a closed copy
of N that is C∗-embedded but not C-embedded?

Since Rω0 is metrizable and, as we shall see,
∣∣C(A)

∣∣ = c we know that ℵ0 < κ ≤ c.
This means that the Continuum Hypothesis settles this question, but there may be
some variation under other assumptions.

Our answer to question (2) from the list on page 2 produces, in the same way,
a closed copy of N in Rc that is not C∗-embedded. After we submitted this paper
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we were able to answer the analogue of Question 1: the smallest cardinal κ such
that Rκ contains a closed copy of N that is not C∗-embedded is ℵ1. See [3] for a
surprising (to us) variety of closed copies of N in Rω1 that are not C∗-embedded.

3. The plank J and a variation

In our third variation of the idea of the plank the topology on ω0 + 1 remains as
it is and we let, from now on, ω1 + 1 carry the topology of the one-point compact-
ification of the discrete space ω1, with ω1 the point at infinity.

In this case we denote the resulting space by J. It is a minor variation of [4,
Example 2.3.36]: in the terminology of that book J = A(ℵ1) × A(ℵ0) \ {〈x0, y0〉},
where we have specified the underlying sets of the factors explicitly.

As in the case of T and D the top line T = ω1 × {ω0} and the right-hand side
R = {ω1} × ω0 cannot be separated by open sets in J. Hence their union is not
C∗-embedded in the space J.

A more careful analysis of the continuous functions on J will reveal that neither T
nor R is C∗-embedded.

Indeed: let f : J→ R be continuous. For each n ∈ ω0 the set {α ∈ ω1 : f(α, n) 6=
f(ω1, n)} is countable. It follows that there is an α in ω1 such that f(β, n) =
f(ω1, n) for all n and all β ≥ α. By continuity this implies that f(β, ω0) = f(α, ω0)
for all β ≥ α. This shows that the function 〈α, ω0〉 7→ α mod 2 (the characteristic
function of the odd ordinals), which is continuous on T , has no continuous extension
to J.

If we let r = f(α, ω0) then it follows that limn→∞ f(ω1, n) = r. We see that the
function 〈ω1, n〉 7→ n mod 2, which is continuous on R, has no continuous extension
to J either.

This argument also shows that J is not realcompact: the co-countable sets on
the top line form a zero-set ultrafilter with the countable intersection property that
has an empty intersection. Alternatively use Proposition 2.1: no infinite subset
of R is C∗-embedded.

The space J is not pseudocompact either: the diagonal {〈n, n〉 : n ∈ ω0} is a
clopen discrete subset.

Ensuring C∗-embeddedness. To ensure that R is C∗-embedded we change the
second factor in our product.

We let X = (ω1 + 1) × βω0 and P = X \ ({ω1} × ω∗0). The right-hand side R
remains unchanged but the top line T now becomes ω1 × ω∗0 .

To see why this makes the right-hand side C∗-embedded let f : R → [0, 1] be
continuous. Take the unique continuous extension of n 7→ f(ω1, n) to βω0 and it
on every vertical line {α} × βω0 to get an extension of f to the plank P .

This does not make the right-hand side C-embedded: the analysis of the con-
tinuous functions on J shows that for any extendable function f the function
n 7→ f(ω1, n) should be extendable from ω0 to βω0 and hence should be bounded.

When we adapt the analysis of continuous functions on J to continuous functions
on P we obtain that the intersection of a zero-set with the top line T contains a
set of the form A(α,Z) = [α, ω1)×Z, where α ∈ ω1 and Z is a zero-set of ω∗0 (and
Z could be empty of course).

Now take any point u in ω∗0 and let Zu be the family of zero-sets of ω∗0 that
contain u. Then {A(α,Z) : α ∈ ω1, Z ∈ Zu} generates a zero-set ultrafilter with
the countable intersection property that has an empty intersection. Thus, the
present plank is not realcompact. Again, Proposition 2.1 applies as well: no closed
copy of N (and there are many) in R is C-embedded.
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4. The plank V

It should be clear that the fact that continuous functions on ω1 + 1 are constant
on co-countable sets is the main cause that the two previous examples are not
realcompact.

To alleviate that we replace ω1+1 by βω1, where ω1 still has the discrete topology.
We take the product Π = βω1 × βω0; our example is V = Π \ (ω∗1 × ω∗0).

The top line and the right-hand side now become T = ω1×ω∗0 and R = ω∗1 ×ω0.

The right-hand side R is C∗-embedded in V. This is proved almost as in the
case of the plank P .

Let f : R → [0, 1] be continuous. Apply the Tietze-Urysohn extension theorem
to each horizontal line Hn to obtain a continuous extension fn : Hn → [0, 1] of the
restriction of f to ω∗1 × {n}.

Next take, for each α ∈ ω1, the unique extension gα of the map 〈α, n〉 7→ fn(α, n)
to {α} × βω0. The union of the maps gα and fn is an extension of f to V.

The right-hand side R is not C-embedded in V. Define f : R → R by
f(x, n) = n. Assume g : V → R is a continuous extension of f . For each n and k
the set

{α ∈ ω1 :
∣∣g(α, n)− n

∣∣ ≥ 2−k}
is finite, hence for each n the set {α : g(α, n) 6= n} is countable. It follows that
there are co-countably many α ∈ ω1 such that g(α, n) = n for all n. For each such
α the restriction of g to the compact set {α} × βω0 would be unbounded, which is
a contradiction.

The space V is realcompact. Let Z be a zero-set ultrafilter with the countable
intersection property. We show that its intersection is nonempty.

To begin: if for some n the clopen ‘horizontal line’ Hn = βω1×{n} belongs to Z
then the compactness of this line implies that

⋂
Z is nonempty.

In the opposite case the complements of the Hn belong to Z; the intersection
of these complements is equal to the top line T . By the countable intersection
property we find that every member of Z intersects T , hence T ∈ Z.

For every subset A of ω1 the partial top line TA = A × ω∗0 is a zero-set as it is
the intersection of T with the clopen subset clA× βω0 of Π.

Consider u = {A : TA ∈ Z}. This is an ultrafilter on ω1 and it has the countable
intersection property and therefore, because ω1 is not a measurable cardinal, it is
a principal ultrafilter. Take α ∈ ω1 such that u = {A ⊆ ω1 : α ∈ A}.

It follows that the compact set {α} × ω∗0 belongs to Z so that
⋂
Z 6= ∅.

Comments. The natural maps from βω1 onto ω1+1 and and from βω0 onto ω0 + 1-
as-the-one-point-compactification are perfect and irreducible. Hence so is the prod-
uct map from Π onto (ω1 + 1)× (ω0 + 1). It follows that the restriction of this map
to V is perfect as well, because V is the preimage of J.

We have seen that J is not realcompact, so we have here a very simple perfect
map that does not preserve realcompactness.

We also note that V is extremally disconnected and it is in fact the absolute of J.

5. Another plank

In this section we construct a realcompact space with a closed copy of N that is
C∗-embedded but not C-embedded.

We let D be the tree 2<ω with the discrete topology and we topologize D ∪
2ω so as to obtain a natural compactification cD of D. If x ∈ 2ω then its nth
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neighbourhood U(x, n) will be the ‘wedge’ above x � n:

U(x, n) = {s ∈ cD : x � n ⊆ s}
Let e : βD → cD be extension of the identity map.

This yields a partition of D∗ into closed sets, indexed by 2ω: simply let Kx =
{u ∈ D∗ : e(u) = x}.

To construct our plank we take a point∞ not in 2ω and topologize C = 2ω∪{∞}
by making every point of 2ω isolated and letting

{U :∞ ∈ U ∧ |C \ U | ≤ ℵ0}
be a local base at ∞.

Let us note that C has a property in common with the horizontal lines in our
planks above: for every continuous function f : C → R there is a neighbourhood
of ∞ (a co-countable set) on which f is constant.

We let A be the following subspace of C× βD:

A = (C×D) ∪
⋃
x∈2ω
{x} ×Kx

We let R = {∞} × D denote the right-hand side of the plank. The top line
T =

⋃
x∈2ω{x}×Kx is not as smooth as in the other examples; every point u of D∗

occurs just once in the top line, when e(u) = x.

R is C∗-embedded. This is as in the previous examples: R is even C∗-embedded
in R ∪ (2ω × βD). Given f : R → [0, 1] let g : βD → [0, 1] be the Čech-Stone
extension of s 7→ f(∞, s) and then define f̄ : A \ R → [0, 1] by f̄(x, u) = g(u)
(replicate g on each vertical line but restrict it to {x}× (ω0∪Kx) each time). Then
f ∪ f̄ is a continuous extension of f .

R is not C-embedded. Below we show that A is realcompact, so Proposition 2.1
implies that R has many infinite C-embedded subsets. Therefore the unbounded
function without continuous extension must be chosen with some care.

Define f(∞, s) = |s| (the length of s). Assume g : A → R is a continuous
extension. By the remark above there is a neighbourhood U of ∞ such that g is
constant on U×{s} for every s ∈ D. But then for every x ∈ U \{∞} and n ∈ ω0 we
have g(x, x � n) = g(∞, x � n) = f(∞, x � n) = n. Since Kx =

⋂
n clβD{x � i : i ≥ n}

this would imply that g(x, u) ≥ n for all n when u ∈ Kx.

A is realcompact. In the plank P in Section 3 we used ω∗0 everywhere in the
top line. Combined with the fact that continuous functions were constant on a
tail on each horizontal line this implied that P is not realcompact, mainly because
unbounded (to the right) zero-sets in the top line contain sets of the form [α, ω1)×Z,
where Z is a zero-set of ω∗0 . In the present example the disjointness of the Kx will
provide us with a richer supply of zero-sets; these will help ensure realcompactness
of A.

Let Z be a zero-set ultrafilter on A with the countable intersection property.

For each s ∈ D the horizontal C× {s} is clopen, hence a zero-set.
The continuous function f : A→ [0, 1] determined by setting f(x, s) = 2−|s| for

all 〈x, s〉 ∈ C×D has the top line T as its zero-set.
This means that we have a partition of A into countably many zero-sets. It

follows that one of these sets must belong to Z.

If C×{s} ∈ Z then either 〈∞, s〉 ∈
⋂
Z or there is a Z ∈ Z is such that ∞ /∈ Z.

But then Z is discrete and countable because {x ∈ C : 〈x, s〉 /∈ Z} is open in C and
contains ∞. Then Z determines a countably complete ultrafilter on Z, which is
fixed because |Z| is countable.
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We are left with the case that T ∈ Z. Here is where we use the partition
{Kx : x ∈ 2ω} of D∗ to show that T may be split into zero-sets in many ways.

We show that whenever A is clopen in the Cantor set 2ω the union Z(A) =⋃
x∈A{x} ×Kx is a zero-set in A.
By compactness and zero-dimensionality of cD we know there is a continuous

function f : cD → {0, 1} such that f [A] = {0} and f [2ω \ A] = {1} (we assume
both A and its complement are non-empty).

We use f to define F : A → {0, 1} by F (x, s) = f(s) if 〈x, s〉 ∈ C × D and
F (x, u) = f(x) if u ∈ Kx.

The function F is continuous on A and we have Z(A) = T ∩ ZF , so Z(A) is a
zero-set of A.

Using this we build countably many pairs of complementary zero sets in T . For
every n ∈ ω we let An = {x ∈ 2ω : x(n) = 0} and Bn = {x ∈ 2ω : x(n) = 1};
these clopen sets determine the zero-sets Z(n, 0) =

⋃
x∈An

{x} ×Kx and Z(n, 1) =⋃
x∈Bn

{x} ×Kx respectively.
Since Z is a zero-set ultrafilter and T ∈ Z we deduce that for every n there is

an element x(n) of {0, 1} such that Z(n, x(n)) ∈ Z. Thus we get an x ∈ 2ω such
that {Z(n, x(n)) : n ∈ ω} is a subfamily of Z.

Its intersection is equal to {x}×Kx and because Z has the countable intersection
property this compact set belongs to Z. It follows that

⋂
Z 6= ∅.

As mentioned before, Proposition 2.1 implies that R has many infinite C-em-
bedded subsets. A lot of these can be pointed out explicitly.

For every x ∈ 2ω the set Nx = {〈∞, x � n〉 : n ∈ ω} is C-embedded in A. Given
a function f : Nx → R we extend it to R first by setting f̄(∞, s) = 0 for all other s.
Then we extend f̄ horizontally: f̄(y, s) = f̄(∞, s) for all y and s, except for y = x,
we set f̄(x, s) = 0 for all s. Now we can set f̄(t) = 0 for all t in the top line to get
our continuous extension to all of A.

In a similar fashion every infinite antichain in 2<ω yields an infinite C-embedded
subset as well.

More answers. We can use A and some variations to answer some of the questions
raised earlier in this paper.

The smallest power of R. The set C×D is dense in A, so every member of C(A) is
determined by its restriction to this set. Using the fact that continuous functions
on C are constant on co-countable sets we see that there are c many such restrictions.
We conclude that C(A) has cardinality c, as claimed in the discussion of Question 1.

The union of two closed C∗-embedded copies of N. We can use A much like we
used K to create a realcompact space with two closed C∗-embedded copies of N
whose union is not C∗-embedded. Take A × {0, 1} and identify the points 〈t, 0〉
and 〈t, 1〉 for all t in the top line T . Then R × {0} and R × {1} are still C∗-
embedded in the resulting quotient space, but their union is not: mapping 〈r, i〉
to i results in a bounded function without a continuous extension. The proof that
the quotient space is realcompact is almost verbatim that of the realcompactness
of A. Note that the R × {0} and R × {1} are separated (neither intersects the
closure of the other), so their union is a closed copy of N that is not C∗-embedded.
The quotient space also has c many real-valued continuous functions, hence also we
obtain a closed copy of N in Rc that is not C∗-embedded. This copy is quite unlike
the closed copies of N in Rω1 that are constructed in [3].

Another closed copy of N that is not C∗-embedded. If we replace βD by cD in A
then we obtain a realcompact plank where the right-hand side is a closed copy of N
that is not C∗-embedded.
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The analogue of A is the following subspace of C× cD:

(C×D) ∪ {〈x, x〉 : x ∈ 2ω}
That this space is realcompact is shown exactly as for A. However in this space the
right-hand side R is not C∗-embedded.

Since 2ω is homeomorphic to its own square it is relatively easy to produce two
disjoint open sets U and V in 2ω with a dense union and whose common boundary F
is homeomorphic to 2ω itself.

Via the map e : βD → cD we can find a subset C of D such that clU ⊆ clC
and clV ⊆ cl(D \ C).

Define f : R → [0, 1] by f(∞, s) = χ(s), where χ is the characteristic function
of C. As before, given a continuous extension f̄ of f , we would have a countable
set B such that f̄(x, s) = f(∞, s) for all x ∈ 2ω \ B and all s ∈ D. But then f̄
would not be continuous at 〈x, x〉 whenever x ∈ F \B.
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