UNIVERSAL AUTOHOMEOMORPHISMS OF N[∗]

KLAAS PIETER HART AND JAN VAN MILL

To the memory of Cor Baayen, who taught us many things

ABSTRACT. We study the existence of universal autohomeomorphisms of \mathbb{N}^* . We prove that CH implies there is such an autohomeomorphism and show that there are none in any model where all autohomeomorphisms of \mathbb{N}^* are trivial.

INTRODUCTION

This paper is concerned with universal autohomeomorphisms on \mathbb{N}^* , the Čech-Stone remainder of \mathbb{N} .

In very general terms we say that an autohomeomorphism h on a space X is universal for a class of pairs (Y, g), where Y is a space and g is an autohomeomorphism of Y, if for every such pair there is an embedding $e: Y \to X$ such that $f \circ e = e \circ g$, that is, h extends the copy of g on e[Y].

In [1, Section 3.4] one finds a general way of finding universal autohomeomorphisms. If X is homeomorphic X^{ω} then the shift mapping $\sigma : X^{\mathbb{Z}} \to X^{\mathbb{Z}}$ defines a universal autohomeomorphism for the class of all pairs (Y,g), where Y is a subspace of X. One embeds Y into $X^{\mathbb{Z}}$ by mapping each $y \in Y$ to the sequence $\langle g^n(y) : n \in \mathbb{Z} \rangle$.

Thus, the Hilbert cube carries an autohomeomorphism that is universal for all autohomeomorphisms of separable metrizable spaces and the Cantor set carries one for all autohomeomorphisms of zero-dimensional separable metrizable spaces. Likewise the Tychonoff cube $[0, 1]^{\kappa}$ carries an autohomeomorphism that is universal for all autohomeomorphisms of completely regular spaces of weight at most κ , and the Cantor cube 2^{κ} has a universal autohomeomorphism for all zero-dimensional such spaces.

Our goal is to have an autohomeomorphism h on \mathbb{N}^* that is universal for all autohomeomorphisms of all *closed* subspaces of \mathbb{N}^* . The first result of this paper is that there is no trivial universal autohomeomorphism of \mathbb{N}^* , and hence no universal autohomeomorphism at all in any model where all autohomeomorphisms of \mathbb{N}^* are trivial. On the other hand, the Continuum Hypothesis implies that there is a universal autohomeomorphism of \mathbb{N}^* . The proof of this will have to be different from the results mentioned above because \mathbb{N}^* is definitely not homeomorphic to its power $(\mathbb{N}^*)^{\omega}$; it will use group actions and a homeomorphism extension theorem.

We should mention the dual notion of universality where one requires the existence of a surjection $s: X \to Y$ such that $g \circ s = s \circ h$. For the space \mathbb{N}^* this was investigated thoroughly in [2] for general group actions.

Date: Sunday 05-09-2021 at 14:27:20 (cest).

²⁰²⁰ Mathematics Subject Classification. Primary: 54D40; Secondary: 03E50 54A35.

Key words and phrases. autohomeomorphism, \mathbb{N}^* , universality.

1. Some preliminaries

Our notation is standard. For background information on \mathbb{N}^* we refer to [5].

We denote by Aut the autohomeomorphism group of \mathbb{N}^* . We call a member h of Aut *trivial* if there are cofinite subsets A and B of \mathbb{N} and a bijection $b: A \to B$ such that h is the restriction of βb to \mathbb{N}^* .

In both sections we shall use the G_{δ} -topology on a given space (X, τ) ; this is the topology τ_{δ} on X generated by the family of all G_{δ} -subsets in the given space. It is well-known that $w(X, \tau_{\delta}) \leq w(X, \tau)^{\aleph_0}$; we shall need this estimate in Section 3.

2. What if all autohomeomorphisms are trivial?

To begin we observe that fixed-point sets of trivial autohomeomorphism of \mathbb{N}^* are clopen. Therefore, to show that no trivial autohomeomorphism is universal it would suffice to construct a compact space that can be embedded into \mathbb{N}^* and that has an autohomeomorphism whose fixed-point set is not clopen.

The example. We let L be the ordinal $\omega_1 + 1$ endowed with its G_{δ} -topology. Thus all points other than ω_1 are isolated and the neighbourhoods of ω_1 are exactly the co-countable sets that contain it. Then L is a P-space of weight \aleph_1 and hence, by the methods in [4, Section 2], its Čech-Stone compactification βL can be embedded into \mathbb{N}^* .

We define $f: L \to L$ such that ω_1 is the only fixed point of βf . We put

$$f(\omega_1) = \omega_1,$$

$$f(2 \cdot \alpha) = 2 \cdot \alpha + 1, \text{ and}$$

$$f(2 \cdot \alpha + 1) = 2 \cdot \alpha.$$

This defines a continuous involution on L.

If $p \in \beta L \setminus L$ then $p \in cl \alpha$ for some $\alpha < \omega_1$ and then either $E = \{2 \cdot \beta : \beta < \alpha\}$ or $O = \{2 \cdot \beta + 1 : \beta < \alpha\}$ belongs to the ultrafilter p. But $f[E] \cap E = \emptyset = f[O] \cap O$, hence $\beta f(p) \neq p$.

Since ω_1 is not an isolated point of βL , no matter how this space is embedded into \mathbb{N}^* there is no trivial autohomeomorphism of \mathbb{N}^* that would extend βf .

3. The Continuum Hypothesis

Under the Continuum Hypothesis the space \mathbb{N}^* is generally very well-behaved and one would expect it to have a universal autohomeomorphism as well. We shall prove that this is indeed the case. We need some well-known facts about closed subspaces of \mathbb{N}^* .

First we have Theorem 1.4.4 from [5] which characterizes the closed subspaces of \mathbb{N}^* under CH: they are the compact zero-dimensional *F*-spaces of weight \mathfrak{c} , and, in addition: every closed subset of \mathbb{N}^* can be re-embedded as a nowhere dense closed *P*-set.

Second we have the homeomorphism extension theorem from [3]: CH implies that every homeomorphism between nowhere dense closed *P*-sets of \mathbb{N}^* can be extended to an autohomeomorphism of \mathbb{N}^* . **Step 1.** We consider the natural action of Aut on \mathbb{N}^* , that is the map $\sigma : \operatorname{Aut} \times \mathbb{N}^* \to \mathbb{N}^*$ given by $\sigma(f, p) = f(p)$. This action is continuous when Aut carries the compactopen topology τ and hence also when Aut carries the G_{δ} -modification τ_{δ} of τ . For the rest of the construction we consider the topology τ_{δ} .

Using this action we define an autohomeomorphism $h : \operatorname{Aut} \times \mathbb{N}^* \to \operatorname{Aut} \times \mathbb{N}^*$ by h(f,p) = (f, f(p)). The map h is continuous because its two coordinates are and it is a homeomorphism because its inverse $(f,p) \mapsto (f, f^{-1}(p))$ is continuous as well.

Now if X is a closed subset of \mathbb{N}^* and $g: X \to X$ is an autohomeomorphism then we can re-embed X as a nowhere dense closed P-set and we can then find an $f \in \text{Aut}$ such that fX = g. We transfer this embedded copy of X to $\{f\} \times \mathbb{N}^*$ in $\text{Aut} \times \mathbb{N}^*$; for this copy of X we then have hX = g. It follows that h satisfies the universality condition.

Step 2. We embed $\operatorname{Aut} \times \mathbb{N}^*$ into \mathbb{N}^* in such a way that there is an autohomeomorphism H of \mathbb{N}^* such that $H(\operatorname{Aut} \times \mathbb{N}^*) = h$. Then H is the desired universal autohomeomorphism of \mathbb{N}^* .

To this end we list a few properties of this product.

Weight. The weight of the product is equal to \mathfrak{c} , as both factors have weight \mathfrak{c} . For \mathbb{N}^* this is clear and for Aut this follows because the topology τ has weight \mathfrak{c} and one obtains a base for τ_{δ} by taking the intersections of all countable subfamilies of a base for τ .

Zero-dimensional and F. The product is a zero-dimensional F-space as the product of the P-space Aut and the compact zero-dimensional F-space \mathbb{N}^* , see [6, Theorem 6.1].

Strongly zero-dimensional. The product $\operatorname{Aut} \times \mathbb{N}^*$ is not compact, but we shall construct a compactification of it that is also a zero-dimensional *F*-space of weight \mathfrak{c} .

For this we need to prove that $\operatorname{Aut} \times \mathbb{N}^*$ is actually strongly zero-dimensional. We prove more: the product is ultraparacompact, meaning that every open cover has a *pairwise disjoint* open refinement.

Let ${\mathcal U}$ be an open cover of the product consisting of basic clopen rectangles.

For each $f \in \text{Aut}$ there is a finite subfamily \mathcal{U}_f of \mathcal{U} that covers $\{f\} \times \mathbb{N}^*$, say $\mathcal{U}_f = \{C_i \times D_i : i < k_f\}$. Let $C_f = \bigcap_{i < k} C_i$ and $D_{f,i} = D_i \setminus \bigcup_{j < i} D_j$ for $i < k_f$. Then $\mathcal{C}_f = \{C_f \times D_{f,i} : i < k_f\}$ is a disjoint family of clopen rectangles that covers $\{f\} \times \mathbb{N}^*$ and refines \mathcal{U} .

Because Aut has weight \mathfrak{c} , and we assume CH, there is a sequence $\langle f_{\alpha} : \alpha \in \omega_1 \rangle$ in Aut such that $\{C_{f_{\alpha}} : \alpha \in \omega_1\}$ covers Aut. Next we let $V_{\alpha} = C_{f_{\alpha}} \setminus \bigcup_{\beta < \alpha} C_{f_{\beta}}$ for all α . Because Aut is a *P*-space the family $\{V_{\alpha} : \alpha \in \omega_1\}$ is a disjoint open cover of Aut.

The family $\{V_{\alpha} \times D_{f_{\alpha},i} : i < k_{f_{\alpha}}, \alpha \in \omega_1\}$ then is a disjoint open refinement of \mathcal{U} .

A compactification. To complete Step 2 we construct a compactification of $\operatorname{Aut} \times \mathbb{N}^*$ that is a zero-dimensional *F*-space of weight \mathfrak{c} and that has an autohomeomorphism that extands *h*. The Čech-Stone compactification would be the obvious canditate, were it not for the fact that its weight is equal to 2^c. More precisely, using some continuous onto function from (Aut, τ) onto [0, 1] one obtains a clopen partition of (Aut, τ_{δ}) of cardinality \mathfrak{c} . This shows that β (Aut $\times \mathbb{N}^*$) admits a continuous surjection onto the space $\beta \mathfrak{c}$ (where \mathfrak{c} carries the discrete topology). To create the desired compactification we build, either by transfinite recursion or by an application of the Löwenheim-Skolem theorem, a subalgebra \mathbb{B} of the algebra of clopen subsets of $\operatorname{Aut} \times \mathbb{N}^*$ that is closed under h and h^{-1} , of cardinality \mathfrak{c} , and that has the property that for every pair of countable subsets A and B of \mathbb{B} such that $a \cap b = \emptyset$ whenever $a \in A$ and $b \in B$ there is a $c \in \mathbb{B}$ such that $a \subseteq c$ and $c \cap b = \emptyset$ for all $a \in A$ and $b \in B$. The latter condition can be fulfilled because $\operatorname{Aut} \times \mathbb{N}^*$ is an F-space — $\bigcup A$ and $\bigcup B$ have disjoint closures — and strongly zero-dimensional — the closures can be separated using a clopen set.

The Stone space $\operatorname{St}(\mathbb{B})$ of \mathbb{B} is then a compactification of $\operatorname{Aut} \times \mathbb{N}^*$ that is a compact zero-dimensional *F*-space of weight \mathfrak{c} , with an autohomeomorphism \overline{h} that extends h. We embed $\operatorname{St}(\mathbb{B})$ into \mathbb{N}^* as a nowhere dense *P*-set and extend \overline{h} to an autohomeomorphism *H* of \mathbb{N}^* .

References

- P. C. Baayen, Universal morphisms, Mathematical Centre Tracts, vol. 9, Mathematisch Centrum, Amsterdam, 1964. MR0172826
- [2] Will Brian, Universal flows and automorphisms of $\mathcal{P}(\omega)$ /fin, Israel J. Math. **233** (2019), no. 1, 453–500, DOI 10.1007/s11856-019-1913-3. MR4013982
- [3] Eric K. van Douwen and Jan van Mill, The homeomorphism extension theorem for βω \ ω, Papers on general topology and applications (Madison, WI, 1991), Ann. New York Acad. Sci., vol. 704, New York Acad. Sci., New York, 1993, pp. 345–350, DOI 10.1111/j.1749-6632.1993.tb52537.x. MR1277871
- [4] Alan Dow and Jan van Mill, An extremally disconnected Dowker space, Proc. Amer. Math. Soc. 86 (1982), no. 4, 669–672, DOI 10.2307/2043607. MR674103
- [5] Jan van Mill, An introduction to $\beta\omega,$ Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR776630
- [6] Stelios Negrepontis, On the product of F-spaces, Trans. Amer. Math. Soc. 136 (1969), 339–346, DOI 10.2307/1994718. MR234407

FACULTY EEMCS, TU DELFT, POSTBUS 5031, 2600 GA DELFT, THE NETHERLANDS *Email address*: k.p.hart@tudelft.nl *URL*: http://fa.ewi.tudelft.nl/~hart

KdV Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

Email address: j.vanmill@uva.nl