The last days I have had the time to follow up on the conjecture that I raised with you; today I believe that I am finished with it; should I have deceived myself, however, then I could find no more indulgent judge than yourself. I therefore take the liberty to present for your judgment, what I just committed to paper in the imperfection of a first concept.

One assumes that all positive numbers $\omega<1$ can be arranged in a sequence

$$
\begin{equation*}
\omega_{1}, \omega_{2}, \omega_{3}, \ldots, \omega_{n}, \ldots \tag{I}
\end{equation*}
$$

Starting with ω_{1} let ω_{α} be the first larger term, after this ω_{β} is the next larger term, and so on. One puts $\omega_{1}=\omega_{1}^{1}, \omega_{\alpha}=\omega_{1}^{2}, \omega_{\beta}=\omega_{1}^{3}$, and so on, and extracts from (I) the following infinite sequence:

$$
\omega_{1}^{1}, \omega_{1}^{2}, \omega_{1}^{3}, \ldots, \omega_{1}^{n}, \ldots
$$

In the remaining sequence one denotes the first term by ω_{2}^{1}, the next larger one by ω_{2}^{2}, and so on, and thus one extracts a second sequence

$$
\omega_{2}^{1}, \omega_{2}^{2}, \omega_{2}^{3}, \ldots, \omega_{2}^{n}, \ldots
$$

In we continue this then one will realize that the sequence (I) can be decomposed into infinitely many sequences:

$$
\begin{align*}
& \omega_{1}^{1}, \omega_{1}^{2}, \omega_{1}^{3}, \ldots, \omega_{1}^{n}, \ldots \tag{1}\\
& \omega_{2}^{1}, \omega_{2}^{2}, \omega_{2}^{3}, \ldots, \omega_{2}^{n}, \ldots \tag{2}\\
& \omega_{3}^{1}, \omega_{3}^{2}, \omega_{3}^{3}, \ldots, \omega_{3}^{n}, \ldots \tag{3}
\end{align*}
$$

in each of these the terms increase continually from left to right, that is,

$$
\omega_{k}^{\lambda}<\omega_{k}^{\lambda+1}
$$

One now takes an interval (p, q) that contains no terms from the sequence (1); for example inside $\left(\omega_{1}^{1}, \omega_{1}^{2}\right)$; it is now possible that all terms of the second and even of the third also lie outside (p, q); there must however be a sequence, the $k^{\text {th }}$ say, for which not all terms lie outside (p, q); (for otherwise the numbers in (p, q) would not occur in (I), in contradiction with our assumption); then one can fix an interval (p^{\prime}, q^{\prime}) inside (p, q) so that the terms of the $k^{\text {th }}$ sequence all lie outside it; of course (p^{\prime}, q^{\prime}) also does not contain any terms of the earlier sequences; there will eventually appear a $k^{\prime \text { th }}$ sequence whose terms are not all outside (p^{\prime}, q^{\prime}) and one will take inside $\left(p^{\prime}, q^{\prime}\right)$ a third interval $\left(p^{\prime \prime}, q^{\prime \prime}\right)$ so that all terms of the $k^{\text {th }}$ sequence lie outside it.

Thus one sees that it is possible to make an infinite sequence of intervals

$$
(p, q),\left(p^{\prime}, q^{\prime}\right),\left(p^{\prime \prime}, q^{\prime \prime}\right), \ldots
$$

in which each contains the next and whose relationship with the sequences (1), (2), (3),\ldots is as follows:

The terms of the $1^{\text {st }}, 2^{\text {nd }}, \ldots, k-1^{\text {st }}$ lie outside (p, q)
those of the $k^{\text {th }}, \ldots, k^{\prime}-1^{\text {th }}$ lie outside $\left(p^{\prime}, q^{\prime}\right)$
those of the $k^{\prime \text { th }}, \ldots, k^{\prime \prime}-1^{\text {th }}$ lie outside $\left(p^{\prime \prime}, q^{\prime \prime}\right)$
There can now be determined at least one number, I call it η that belongs to the interior of all these intervals; of this number, that is clearly >0 and <1 one readily sees that it does not occur in any of our sequences (1), (2), $\ldots,(n)$. Thus one would, assuming that all numbers >0 and <1 occur in the sequence (I), be lead to the opposite result that a certain number η that is >0 and <1 could not be found among the terms of (I); consequently the assumption was erroneous.

Thus I believe I have finally found the reason why the entity that I denoted by (x) in my earlier letters can not be put into correspondence with that which I denoted (n).

