Written Exam: 22 June 2011, 13-16, room
Name:
University:

Student ID:

General comments.
(1) The time for this exam is $\mathbf{3}$ hours ($\mathbf{1 8 0}$ minutes).
(2) There are $\mathbf{1 0 4}$ points in the exam: $\mathbf{5 2}$ points are sufficient for passing.
(3) Please mark the answers to the questions in Exercise I on this sheet by crosses.
(4) Make sure that you have your name, university and student ID on each of the sheets you are handing in.
(5) If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for anyone will be announced publicly.
(6) No talking during the exam.
(7) Cell phones must be switched off and stowed.

Exercise I (24 points).
Find the correct answer (1 point each):
(1) One of the following four theories cannot have finite models (any model is non-empty, so $\exists x(x=x)$ is always true; also Empty Set refers to the axiom $\exists x \forall y(y \notin x))$. Which one?

A: Extensionality + Separation.
B: Extensionality + AC.C: Pairing +AC .D: Extensionality + Empty Set + Pairing.
(2) Who gave the first axiomatic treatment of set theory, leading to a predecessor of the current standard axiomatic system ZFC?

A: Georg Cantor.B: Ernst Zermelo.C: Abraham Fraenkel.D: Saharon Shelah.
(3) One of the following ordinal equalities is false. Which one?
$\square \mathbf{A}: 2 \cdot \omega=3 \cdot \omega$.
B: $3+\omega+\omega^{2}=\omega+3+\omega^{2}$.
C: $\omega^{2}+3=3+\omega^{2}$.
\square D: $12 \cdot(5+\omega)=60 \cdot \omega$.
(4) In the usual formalization of natural numbers and ordered pairs (i.e., $n=\{0, \ldots, n-1\}$ and $(x, y):=\{\{x\},\{x, y\}\})$, one of the following statements is true. Which one?

A: $17 \in 4$.
B: $2 \in(0,1)$.
C: $(0,1)=2$.D: $4 \in(4,17)$.
(5) Which of the following inequalities is true in ordinal arithmetic?A: $2^{\omega}<3^{\omega}$.
B: $\omega^{2}<\omega^{3}$.C: $2+\omega<3+\omega$.D: $2 \cdot \omega<3 \cdot \omega$.
(6) Which of the following is provable in ZF?A: If κ is an infinite cardinal number then $\kappa \cdot \kappa=\kappa$.
B: If κ is an infinite cardinality then $\kappa \cdot \kappa=\kappa$.
C: If κ is an infinite cardinality then $\aleph_{0} \leq \kappa$.D: If κ is an infinite cardinal number then so is 2^{κ}.
(7) Consider the statement "for all limit ordinals $\lambda, \operatorname{cf}\left(\aleph_{\lambda}\right)=\operatorname{cf}(\lambda)$ ". Which of the following statements is true?

A: The statement is provable in ZF.
\square B: The statement is provable in ZFC, but not in ZF.C: The statement is refutable.D: The statement has large cardinal strength.
(8) Suppose that λ is a limit cardinal. Which of the following statements is provable in ZFC?A: The cardinal λ is singular.
B: The cardinal λ is regular.C: $\lambda=\aleph_{\lambda}$.D: None of the above.
(9) Assume \aleph_{ω} is a strong limit, which of the following is not provable in ZFC?

A: $2^{\aleph_{\omega}}=\aleph_{\omega}^{\aleph_{0}}$
B: $2^{\aleph_{\omega}}=\operatorname{maxpcf}\left\{\aleph_{n}: n \in \omega\right\}$C: $2^{\aleph_{\omega}}<\aleph_{\omega_{4}}$
D: $2^{\aleph_{\omega}} \leq \aleph_{\omega_{3}}$
(10) The Continuum Hypothesis CH states that $2^{\aleph_{0}}=\aleph_{1}$. One of the following statements is equivalent to CH (in ZFC). Which one?A: Every uncountable set of real numbers contains a perfect set.B: Every uncountable set of real numbers contains a set of cardinality $2^{\aleph_{0}}$.C: Every perfect set is uncountable.D: Every uncountable set has cardinality $2^{\aleph_{0}}$.
(11) Which of the following statements are provable in ZF for all cardinalities?
$\square \mathbf{A :}(\kappa \cdot \lambda)^{\mu}=\kappa^{\mu} \cdot \lambda^{\mu}$.
B: $\kappa \leq \lambda$ implies $\kappa^{\mu} \leq \lambda^{\mu}$.
\square C: $\kappa \leq \lambda$ implies $\mu^{\kappa} \leq \mu^{\lambda}$.
D: $\kappa<\lambda$ implies $\mu^{\kappa}<\mu^{\lambda}$.
(12) On the basis of ZF , there are many equivalents of the Axiom of Choice. One of the following theorems of ZFC is not equivalent to the Axiom of Choice. Which one?

A: Zorn's Lemma.
\square B: Zermelo's Wellordering Theorem.
\square C: Every vector space has a basis.
$\square \mathbf{D}$: There is a non-Lebesgue measurable set.
(13) Let A and B be infinite sets. Which of the following statements is, in ZF, equivalent to $|A| \leq|B|$:
$\square \mathbf{A :}|\mathcal{P}(A)| \leq|\mathcal{P}(B)|$.
\square B: There is a surjection $f: B \rightarrow A$.
$\square \mathbf{C}:|A \times A| \leq|B|$.D: None of the above.
(14) Which of the following is not provable in ZF?A: There is an injection $f: \omega_{1} \rightarrow \mathbb{R}$.
B: There is a surjection $f: \mathbb{R} \rightarrow \omega_{1}$.
$\square \mathbf{C}$: There is a bijection $f: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{R}$.
$\square \mathbf{D}$: There is a bijection $f: \mathbb{N} \rightarrow \mathbb{A}$, where \mathbb{A} is the set of algebraic numbers.
(15) The fact that ω_{1} is regular is a theorem of ZFC, but cannot be proved in ZF alone. In class, we introduced $\mathrm{AC}_{X}(Y)$ for "for every function $f: X \rightarrow \wp(Y) \backslash\{\varnothing\}$ there is a function $g: X \rightarrow Y$ such that $\forall x(g(x) \in f(x)) "$ and showed that AC is equivalent to $\forall X \forall Y \mathrm{AC}_{X}(Y)$. Only of the following fragments of $A C$ can prove that ω_{1} is regular. Which one?
\square A: $\mathrm{AC}_{\omega_{1}}(\omega)$.
B: $\mathrm{AC}_{\omega}\left(\omega_{1}\right)$.
C: $\mathrm{AC}_{\omega}(\mathcal{P}(\omega))$.
\square D: $\mathrm{AC}_{2}\left(\wp\left(\omega_{1}\right)\right)$.
(16) Which of the following partition relations is not provable in ZFC?
\square A: $2^{\aleph_{1}} \rightarrow\left(\aleph_{2}\right)_{2}^{2}$?
$\square \mathrm{B}:\left(2^{\aleph_{1}}\right)^{+} \rightarrow\left(\aleph_{2}\right)_{\aleph_{1}}^{2}$?
\square C: $\aleph_{0} \rightarrow\left(\aleph_{0}\right)_{300}^{25}$?D: $\aleph_{2} \rightarrow\left(\aleph_{0}, \aleph_{2}\right)^{2}$?
(17) Only one of the following statements of cardinal arithmetic is provable in ZFC. Which one? (κ, λ and μ are assumed to be infinite cardinals)

A: $2^{\aleph_{0}}=\aleph_{2}$.
B: $\kappa^{\text {cf } \kappa}=2^{\kappa}$.
C: If $\mu<\kappa$ and $\mu^{\lambda} \geq \kappa$ then $\kappa^{\lambda}=\mu^{\lambda}$.D: $2^{<\kappa}=\kappa$.
(18) Let M be a countable elementary substructure of $\mathbf{H}\left(\aleph_{3}\right)$. Which of the following statements is true?
\square A: $\omega \in M$.
\square B: $\omega_{1} \in M$.
\square C: $\omega_{2} \in M$.
$\square \mathbf{D}: \omega_{1} \subseteq M$.
(19) Which of the following statements is true?
\square A: You cannot prove the existence of strong limit cardinals in ZFC.
B: You can prove the existence of strong limit cardinals of cofinality ω_{2} in ZFC.
\square C: If κ is a strong limit, then $\kappa=2^{\kappa}$.
\square D: It is consistent that \aleph_{2} is a strong limit cardinal.
(20) As in the lecture, we say that for theories S and T, S is stronger than T if S proves the consistency of T. Which of the following theories is the strongest?
\square A: There are two inaccessible cardinals.
\square B: There are infinitely many inaccessible cardinals.C: There are two inaccessible cardinals $\kappa<\lambda$ and κ is itself a limit of inaccessible cardinals.
\square D: There is a proper class of inaccessible cardinals.
(21) Which of the following is provable in ZFC?A: If the GCH holds below \aleph_{ω} then $2^{\aleph_{\omega}}=\aleph_{\omega+1}$.
\square B: If the GCH holds below $\aleph_{\omega_{1}}$ then $2^{\aleph_{\omega_{1}}}=\aleph_{\omega_{1}+1}$.C: If the GCH holds below \aleph_{25} then $2^{\aleph_{25}}=\aleph_{26}$.D: If $\aleph_{\omega_{1}}$ is a strong limit then $2^{\aleph_{\omega_{1}}} \leq \aleph_{\omega_{2}}$.
(22) One of the following statements is true. Which one?
\square A: Every inaccessible cardinal is weakly compact.
B: Every weakly compact cardinal is inaccessible.
\square C: Every Mahlo cardinal is measurable.
\square D: Every inaccessible cardinal is Mahlo.
(23) Let κ be a regular cardinals. One of the following sets forms a filter on κ. Which one?

A: $\{C ; C$ is club in $\kappa\}$.
B: $\{C ; C$ contains a set that is club in $\kappa\}$.
$\square \mathbf{C}:\{C ; C$ is stationary in $\kappa\}$.
$\square \mathbf{D}:\{C ; C$ is not club in $\kappa\}$.
(24) One of the following statements is false. Which one?

A: If κ has the tree property, then κ is weakly compact.
B: If κ is weakly compact, then κ has the tree property.
C: If κ is weakly compact, then every $\mathcal{L}_{\kappa, \omega}$-language as the weak compactness property.
D: If κ is weakly compact, then it is the κ th inaccessible cardinal.
Exercise II (15 points).
Work without using the Axiom of Choice. Prove that \aleph_{2} cannot be a countable union of countable sets.
[Hint. If $S \subseteq \aleph_{2}$ is countable, then the order type of $(S,<)$ is a countable ordinal.]
Exercise III (15 points).
Prove the first non-trivial version of Ramsey's theorem:

$$
\aleph_{0} \rightarrow\left(\aleph_{0}\right)_{2}^{2}
$$

Exercise IV (20 points).
Work without the Axiom of Choice. For a set X, let $h(X)$ be the first ordinal α for which there is no injection $f: \alpha \rightarrow X$.
(1) Prove that $h(X)$ is well-defined (5 points).
(2) Prove: X is well-orderable if and only if there is an injection from X into $h(X)$ (5 points).
(3) Prove: if there is a bijection $b:(X \cup h(X))^{2} \rightarrow X \cup h(X)$ then there is an injection $f: X \rightarrow h(X)$ (5 points).
[Hint. Show that for every $x \in X$ there is an $\alpha_{x}<h(X)$ such that $b\left(x, \alpha_{x}\right) \notin X$.]
(4) Prove that AC is equivalent to the statement that $\kappa \cdot \kappa=\kappa$ for all infinite cardinalities (5 points).

Exercise V (30 points).
Recall that a class function S : Ord \rightarrow Ord was called a normal sequence if it is monotone (for $\alpha<\beta$, we have $S(\alpha)<S(\beta)$) and continuous (for limit λ, we have $S(\lambda)=\bigcup\{S(\alpha) ; \alpha<\lambda\}$).
(1) Prove that every normal sequence has arbitrarily large fixed points (i.e., for every α, there is a $\xi>\alpha$ such that $S(\xi)=\xi$ (5 points).
(2) Consider the sequence recursively defined by $\beth_{0}:=\omega, \beth_{\alpha+1}:=2^{\beth_{\alpha}}$, and $\beth_{\lambda}:=\bigcup\left\{\beth_{\alpha} ; \alpha<\right.$ $\lambda\}$. Prove that there is a so-called beth fixed point, i.e., a κ such that $\beth_{\kappa}=\kappa$ (5 points).
(3) Prove that the least beth fixed point has cofinality ω (5 points).
(4) Suppose that there are unboundedly many inaccessible cardinals. Consider the class function ι : Ord \rightarrow Ord such that $\iota(\alpha)$ is the α th inaccessible cardinal. Show that ι is not normal (5 points).
(5) Suppose now that there is an ι-fixed point, i.e., a κ such that $\iota(\kappa)=\kappa$. Prove that the least such κ is not a Mahlo cardinal (10 points).

