

Set Theory 2010/2011; 2nd Semester K. P. Hart & B. Löwe

Written Exam: 22 June 2011, 13-16, room

Name:

University:

Student ID:

General comments.

- (1) The time for this exam is 3 hours (180 minutes).
- (2) There are 104 points in the exam: 52 points are sufficient for passing.
- (3) Please mark the answers to the questions in Exercise I on this sheet by crosses.
- (4) Make sure that you have your name, university and student ID on each of the sheets you are handing in.
- (5) If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for anyone will be announced publicly.
- (6) No talking during the exam.
- (7) Cell phones must be switched off and stowed.

Exercise I (24 points).

Find the correct answer (1 point each):

- (1) One of the following four theories cannot have finite models (any model is non-empty, so $\exists x(x=x)$ is always true; also Empty Set refers to the axiom $\exists x \forall y(y \notin x)$). Which one?
 - \Box A: Extensionality + Separation.
 - \square B: Extensionality + AC.
 - \Box C: Pairing + AC.
 - \Box D: Extensionality + Empty Set + Pairing.
- (2) Who gave the first axiomatic treatment of set theory, leading to a predecessor of the current standard axiomatic system ZFC?
 - \Box A: Georg Cantor.
 - \Box B: Ernst Zermelo.
 - \Box C: Abraham Fraenkel.
 - \Box D: Saharon Shelah.

- (3) One of the following ordinal equalities is false. Which one?
 - $\Box \mathbf{A:} 2 \cdot \omega = 3 \cdot \omega.$ $\Box \mathbf{B:} 3 + \omega + \omega^2 = \omega + 3 + \omega^2.$ $\Box \mathbf{C:} \omega^2 + 3 = 3 + \omega^2.$ $\Box \mathbf{D:} 12 \cdot (5 + \omega) = 60 \cdot \omega.$
- (4) In the usual formalization of natural numbers and ordered pairs (i.e., $n = \{0, ..., n-1\}$ and $(x, y) := \{\{x\}, \{x, y\}\}$), one of the following statements is true. Which one?
 - \Box A: $17 \in 4$.
 - \Box **B**: 2 \in (0, 1).
 - \Box **C**: (0,1) = 2.
 - \Box **D:** 4 \in (4, 17).
- (5) Which of the following inequalities is true in *ordinal arithmetic*?
 - \Box A: $2^{\omega} < 3^{\omega}$.
 - \Box **B:** $\omega^2 < \omega^3$.
 - $\Box \mathbf{C:} \ 2 + \omega < 3 + \omega.$
 - $\Box \mathbf{D:} \ 2 \cdot \omega < 3 \cdot \omega.$
- (6) Which of the following is provable in ZF?
 - \Box A: If κ is an infinite *cardinal number* then $\kappa \cdot \kappa = \kappa$.
 - \Box **B**: If κ is an infinite *cardinality* then $\kappa \cdot \kappa = \kappa$.
 - \Box C: If κ is an infinite *cardinality* then $\aleph_0 \leq \kappa$.
 - \Box **D**: If κ is an infinite *cardinal number* then so is 2^{κ} .
- (7) Consider the statement "for all limit ordinals λ , $cf(\aleph_{\lambda}) = cf(\lambda)$ ". Which of the following statements is true?
 - \Box A: The statement is provable in ZF.
 - \square B: The statement is provable in ZFC, but not in ZF.
 - \Box C: The statement is refutable.
 - \Box **D**: The statement has large cardinal strength.
- (8) Suppose that λ is a limit cardinal. Which of the following statements is provable in ZFC? \Box A: The cardinal λ is singular.
 - \square **B**: The cardinal λ is regular.
 - \Box C: $\lambda = \aleph_{\lambda}$.
 - \Box **D**: None of the above.
- (9) Assume \aleph_{ω} is a strong limit, which of the following is not provable in ZFC?
 - \Box A: $2^{\aleph_{\omega}} = \aleph_{\omega}^{\aleph_0}$
 - $\Box \mathbf{B}: 2^{\aleph_{\omega}} = \max \operatorname{pcf}\{\aleph_n : n \in \omega\}$
 - \Box C: $2^{\aleph_{\omega}} < \aleph_{\omega_4}$
 - \Box **D**: $2^{\aleph_{\omega}} \leq \aleph_{\omega_3}$
- (10) The Continuum Hypothesis CH states that $2^{\aleph_0} = \aleph_1$. One of the following statements is equivalent to CH (in ZFC). Which one?
 - \Box A: Every uncountable set of real numbers contains a perfect set.
 - \square B: Every uncountable set of real numbers contains a set of cardinality 2^{\aleph_0} .
 - \Box C: Every perfect set is uncountable.
 - \Box **D**: Every uncountable set has cardinality 2^{\aleph_0} .

- (11) Which of the following statements are provable in ZF for all *cardinalities*?
 - $\Box \mathbf{A:} (\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}.$
 - \Box **B:** $\kappa \leq \lambda$ implies $\kappa^{\mu} \leq \lambda^{\mu}$.
 - \Box C: $\kappa \leq \lambda$ implies $\mu^{\kappa} \leq \mu^{\lambda}$.
 - $\Box \mathbf{D}: \kappa < \lambda \text{ implies } \mu^{\kappa} < \mu^{\lambda}.$
- (12) On the basis of ZF, there are many equivalents of the Axiom of Choice. One of the following theorems of ZFC is not equivalent to the Axiom of Choice. Which one?
 - \Box A: Zorn's Lemma.
 - \square **B:** Zermelo's Wellordering Theorem.
 - \Box C: Every vector space has a basis.
 - \Box **D**: There is a non-Lebesgue measurable set.
- (13) Let A and B be infinite sets. Which of the following statements is, in ZF, equivalent to $|A| \leq |B|$:
 - \square A: $|\mathcal{P}(A)| \leq |\mathcal{P}(B)|$.
 - \Box **B:** There is a surjection $f: B \to A$.
 - \Box C: $|A \times A| \leq |B|$.
 - \Box **D**: None of the above.
- (14) Which of the following is *not* provable in ZF?
 - \Box A: There is an injection $f: \omega_1 \to \mathbb{R}$.
 - \square **B**: There is a surjection $f : \mathbb{R} \to \omega_1$.
 - \Box C: There is a bijection $f : \mathcal{P}(\mathbb{N}) \to \mathbb{R}$.
 - \Box D: There is a bijection $f : \mathbb{N} \to \mathbb{A}$, where \mathbb{A} is the set of algebraic numbers.
- (15) The fact that ω_1 is regular is a theorem of ZFC, but cannot be proved in ZF alone. In class, we introduced $AC_X(Y)$ for "for every function $f: X \to \wp(Y) \setminus \{\varnothing\}$ there is a function $g: X \to Y$ such that $\forall x(g(x) \in f(x))$ " and showed that AC is equivalent to $\forall X \forall Y AC_X(Y)$. Only of the following fragments of AC can prove that ω_1 is regular. Which one?
 - \Box **A:** AC_{ω_1}(ω).
 - \Box **B:** AC_{ω}(ω_1).
 - \Box C: AC_{ω}($\mathcal{P}(\omega)$).
 - \Box **D:** AC₂($\wp(\omega_1)$).
- (16) Which of the following partition relations is not provable in ZFC?
 - \square **A:** $2^{\aleph_1} \rightarrow (\aleph_2)_2^2$?
 - $\Box \mathbf{B}: (2^{\aleph_1})^+ \to (\aleph_2)^2_{\aleph_1}?$
 - $\Box \mathbf{C}: \aleph_0 \to (\aleph_0)_{300}^{25}?$
 - \Box **D**: $\aleph_2 \rightarrow (\aleph_0, \aleph_2)^2$?
- (17) Only one of the following statements of cardinal arithmetic is provable in ZFC. Which one? $(\kappa, \lambda \text{ and } \mu \text{ are assumed to be infinite cardinals})$
 - \Box **A**: $2^{\aleph_0} = \aleph_2$.
 - $\Box \mathbf{B}: \kappa^{\mathrm{cf}\,\kappa} = 2^{\bar{\kappa}}.$
 - \Box C: If $\mu < \kappa$ and $\mu^{\lambda} \ge \kappa$ then $\kappa^{\lambda} = \mu^{\lambda}$.
 - \Box **D:** $2^{<\kappa} = \kappa$.
- (18) Let M be a countable elementary substructure of $\mathbf{H}(\aleph_3)$. Which of the following statements is true?
 - $\Box \mathbf{A}: \ \omega \in M.$ $\Box \mathbf{B}: \ \omega_1 \in M.$
 - \Box C: $\omega_2 \in M$.

 \Box **D**: $\omega_1 \subseteq M$.

- (19) Which of the following statements is true?
 - \Box A: You cannot prove the existence of strong limit cardinals in ZFC.
 - \Box B: You can prove the existence of strong limit cardinals of cofinality ω_2 in ZFC.
 - \Box C: If κ is a strong limit, then $\kappa = 2^{\kappa}$.
 - \Box **D**: It is consistent that \aleph_2 is a strong limit cardinal.
- (20) As in the lecture, we say that for theories S and T, S is stronger than T if S proves the consistency of T. Which of the following theories is the strongest?
 - \Box A: There are two inaccessible cardinals.
 - \square **B**: There are infinitely many inaccessible cardinals.
 - \Box C: There are two inaccessible cardinals $\kappa < \lambda$ and κ is itself a limit of inaccessible cardinals.
 - \Box **D**: There is a proper class of inaccessible cardinals.
- (21) Which of the following is provable in ZFC?
 - \Box A: If the GCH holds below \aleph_{ω} then $2^{\aleph_{\omega}} = \aleph_{\omega+1}$.
 - \square B: If the GCH holds below \aleph_{ω_1} then $2^{\aleph_{\omega_1}} = \aleph_{\omega_1+1}$.
 - \Box C: If the GCH holds below \aleph_{25} then $2^{\aleph_{25}} = \aleph_{26}$.
 - \Box **D**: If \aleph_{ω_1} is a strong limit then $2^{\aleph_{\omega_1}} \leq \aleph_{\omega_2}$.
- (22) One of the following statements is true. Which one?
 - \Box A: Every inaccessible cardinal is weakly compact.
 - \square **B**: Every weakly compact cardinal is inaccessible.
 - \Box C: Every Mahlo cardinal is measurable.
 - \Box **D**: Every inaccessible cardinal is Mahlo.
- (23) Let κ be a regular cardinals. One of the following sets forms a filter on κ . Which one?
 - \Box A: {C; C is club in κ }.
 - \square **B**: {*C*; *C* contains a set that is club in κ }.
 - \Box C: {*C*; *C* is stationary in κ }.
 - \Box **D**: {*C*; *C* is not club in κ }.
- (24) One of the following statements is false. Which one?
 - \Box A: If κ has the tree property, then κ is weakly compact.
 - \square **B**: If κ is weakly compact, then κ has the tree property.
 - \Box C: If κ is weakly compact, then every $\mathcal{L}_{\kappa,\omega}$ -language as the weak compactness property.
 - \Box **D**: If κ is weakly compact, then it is the κ th inaccessible cardinal.

Exercise II (15 points).

Work without using the Axiom of Choice. Prove that \aleph_2 cannot be a countable union of countable sets.

[**Hint.** If $S \subseteq \aleph_2$ is countable, then the order type of (S, <) is a countable ordinal.]

Exercise III (15 points).

Prove the first non-trivial version of Ramsey's theorem:

$$\aleph_0 \to (\aleph_0)_2^2.$$

Exercise IV (20 points).

Work without the Axiom of Choice. For a set X, let h(X) be the first ordinal α for which there is no injection $f : \alpha \to X$.

- (1) Prove that h(X) is well-defined (5 points).
- (2) Prove: X is well-orderable if and only if there is an injection from X into h(X) (5 points).
- (3) Prove: if there is a bijection $b : (X \cup h(X))^2 \to X \cup h(X)$ then there is an injection $f : X \to h(X)$ (5 points).
 - [**Hint.** Show that for every $x \in X$ there is an $\alpha_x < h(X)$ such that $b(x, \alpha_x) \notin X$.]
- (4) Prove that AC is equivalent to the statement that $\kappa \cdot \kappa = \kappa$ for all infinite *cardinalities* (5 points).

Exercise V (30 points).

Recall that a class function S: Ord \rightarrow Ord was called a *normal sequence* if it is monotone (for $\alpha < \beta$, we have $S(\alpha) < S(\beta)$) and continuous (for limit λ , we have $S(\lambda) = \bigcup \{S(\alpha); \alpha < \lambda\}$).

- (1) Prove that every normal sequence has arbitrarily large fixed points (i.e., for every α , there is a $\xi > \alpha$ such that $S(\xi) = \xi$ (5 points).
- (2) Consider the sequence recursively defined by $\exists_0 := \omega, \exists_{\alpha+1} := 2^{\exists_{\alpha}}, \text{ and } \exists_{\lambda} := \bigcup \{ \exists_{\alpha}; \alpha < \lambda \}$. Prove that there is a so-called *beth fixed point*, i.e., a κ such that $\exists_{\kappa} = \kappa$ (5 points).
- (3) Prove that the least beth fixed point has cofinality ω (5 points).
- (4) Suppose that there are unboundedly many inaccessible cardinals. Consider the class function ι : Ord \rightarrow Ord such that $\iota(\alpha)$ is the α th inaccessible cardinal. Show that ι is not normal (5 points).
- (5) Suppose now that there is an ι -fixed point, i.e., a κ such that $\iota(\kappa) = \kappa$. Prove that the least such κ is not a Mahlo cardinal (10 points).