

Set Theory 2010/2011; 2nd Semester K. P. Hart & B. Löwe

Written hertentamen: 29 August 2011, 16-19

Name:

University:

Student ID:

General comments.

- (1) The time for this exam is 3 hours (180 minutes).
- (2) There are 104 points in the exam: 52 points are sufficient for passing.
- (3) Please mark the answers to the questions in Exercise I on this sheet by crosses.
- (4) Make sure that you have your name, university and student ID on each of the sheets you are handing in.
- (5) If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for anyone will be announced publicly.
- (6) No talking during the exam.
- (7) Cell phones must be switched off and stowed.

Exercise I (25 points).

Find the correct answer (1 point each):

- (1) Consider the structure \mathbf{V}_{ω} , with \in and = as usual. Which of the following axioms of ZFC does not hold in this structure?
 - \Box A Axiom of Replacement,
 - \Box B Axiom of Choice,
 - \Box C Axiom of Infinity,
 - \Box D Axiom of Pairing.
- (2) Consider the statement "for all ordinals α one has cf $\aleph_{\alpha} = cf \alpha$ ". Which of the following is true?
 - \Box A The statement is provable in ZF.
 - \square B The statement is provable in ZFC but not in ZF.
 - \Box C The statement is refutable.
 - \square D The statement has large cardinal strength.

(3) One of the following ordinal inequalities is correct. Which one?

 $\Box A \quad \omega \cdot 2 = \omega \cdot 3.$ $\Box B \quad \omega^2 + \omega + 3 = \omega^2 + 3 + \omega.$ $\Box C \quad \omega + \omega^2 + \omega^3 = \omega^2 + \omega + \omega^3.$ $\Box D \quad 12 \cdot (\omega + 5) = \omega \cdot 60.$

- (4) We adopt the usual definitions of ordered pair as (a, b) = {{a}, {a, b}} and ordinal numbers as their sets of predecessors. Just one of the following statements is not true, which one?
 □ A 1 ∈ (0, 1).
 - \Box A $1 \in (0, 1)$. \Box B $2 \in (0, 1)$.
 - $\Box C 0 \in (0,1).$
 - $\Box D (0,1) \subseteq 3.$
- (5) Which of the following inequalities is false in *ordinal arithmetic*?
 - $\label{eq:alpha} \begin{array}{l} \square \ \mathbf{A} \ 2^{\omega} < 3^{\omega}. \\ \square \ \mathbf{B} \ \omega^2 < \omega^3. \\ \square \ \mathbf{C} \ \omega + 2 < \omega + 3. \\ \square \ \mathbf{D} \ \omega \cdot 2 < \omega \cdot 3. \end{array}$
- (6) Define the following structure: let the universe be the set N of natural numbers; interpret ∈ by < and let = be ordinary equality. Which of the following axioms holds in this structure:
 □ A Pairing
 - \Box B Separation
 - \square C Union
 - \Box D Infinity
- (7) Which of the following is provable in ZF?
 - \Box A If κ is an infinite *cardinality* then $\aleph_0 \leq \kappa$.
 - \Box B If κ is an infinite *cardinal number* then $\aleph_0 \leq \kappa$.
 - \Box C If κ is an infinite *cardinality* then $\kappa \cdot \kappa = \kappa$.
 - \Box D If κ is an infinite *cardinal number* then so is 2^{κ} .
- (8) One of the following cardinal numbers is not regular, which one?
 - $\Box A 0.$
 - □ B 1.
 - \Box C 2.
 - $\Box D \aleph_0.$
- (9) Assume \aleph_{ω_1} is a strong limit. Which of the following is (not) provable in ZFC $\Box \land 2^{\aleph_{\omega_1}} = \aleph_{\omega_1+1}$.
 - $\Box B 2^{\aleph_{\omega_1}} = \max \operatorname{pcf}\{\aleph_n : n \in \omega\}.$
 - $\Box \subset 2^{\aleph_{\omega_1}} < \aleph_{\gamma}$, where $\gamma = (2^{\aleph_1})^+$.
 - \Box D $2^{\aleph_{\omega_1}} \leq \aleph_{\omega_3}$.
- (10) One of the following statements is equivalent to the Continuum Hypothesis, which one?
 - \Box A \mathbb{R}^2 is the union of two sets A and B such that all vertical sections of A and all horizontal sections of B are countable.
 - \square B \mathbb{R}^2 is the union of two sets A and B such that all vertical sections of A and all horizontal sections of B are finite.
 - \Box C There is a family of \aleph_1 many bounded sets in \mathbb{R} such that every bounded set is a subset of one of them.
 - \Box D If $A \subset \mathbb{R}$ has cardinality less than \mathbb{R} ; then $\mathbb{R} \setminus A$ contains a perfect subset.

- (11) Which of the following statements is provable in ZF for all *cardinalities*?
 - \Box A $\kappa < \lambda$ implies $\kappa^{\mu} < \lambda^{\mu}$.
 - \square B $\kappa < \lambda$ implies $\mu^{\kappa} < \mu^{\lambda}$.
 - $\Box \mathbf{C} \ (\kappa^{\lambda})^{\mu} = \bar{\kappa}^{\lambda \cdot \mu}.$
 - \Box D $\kappa < \lambda$ implies $\mu^{\kappa} < \mu^{\lambda}$.
- (12) On the basis of ZF there are many equivalents of the Axiom of Choice. One of the following theorems of ZFC is equivalent to the Axiom of Choice. Which one?
 - \Box A The Hahn-Banach theorem.
 - \Box B Tychonoff's product theorem for Hausdorff spaces.
 - \Box C The maximal ideal theorem.
 - \Box D Tychonoff's product theorem for arbitrary topological spaces.
- (13) We often use informal mathematical notation using curly braces to denote sets. However, not every expression corresponds to a set; sometimes, we denote proper classes. Among the following expressions, one corresponds to a proper class. Which one?
 - \Box A {x ; x is a nonempty subset of the natural numbers}.
 - \Box B {x ; x is a finite set of real numbers}.
 - \Box C {x ; x is a one-element set of complex numbers }.
 - \Box D {x ; x is a two-element subset of a vector space}.
- (14) Suppose that there is a weakly compact cardinal kappa. Consider \mathbf{V}_{κ} as a model of set theory. Only one of the following statements is not provably true in \mathbf{V}_{κ} :
 - \Box A The Axiom of Replacement.
 - \square B For every α , there is an inaccessible cardinal bigger than α .
 - \Box C There is a weakly compact cardinal.
 - \Box D There is an inaccessible cardinal that is a limit of inaccessible cardinals.
- (15) Which of the following is *not* provable in ZF?
 - \Box A There is a surjection $f : \mathbb{R} \to \omega$.
 - \square B There is a surjection $f : \mathbb{R} \to \omega_1$.
 - \Box C There is a surjection $f : \mathbb{R} \to \omega_2$.
 - \Box D There is an injection $f: \omega_1 \to \mathcal{P}(\mathbb{R})$.
- (16) The regularity of successor cardinal numbers is a theorem of ZFC, but cannot be proved in ZF. In class we formulated the following instances of the Axiom of Choice; $AC_X(Y)$ means: for every $f: X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ there is $g: X \to Y$ such that $g(x) \in f(x)$ for all $x \in X$. Only one of the following instances of AC can, for a specific κ , prove that κ^+ is regular, which one?
 - \Box A AC_{κ}(κ^+).
 - \square B AC_{κ}($\mathcal{P}(\kappa)$).
 - $\Box \subset \mathsf{AC}_{\kappa}(\mathbb{R}).$
 - \Box D AC_{κ}(κ).
- (17) Which of the following partition relations is provable in ZFC?
 - $\label{eq:alpha} \begin{array}{l} \Box \ A \ 5 \to (3)_2^2. \\ \Box \ B \ (2^{\aleph_0})^+ \to (\aleph_1)_2^2. \\ \Box \ C \ \aleph_1 \to (\aleph_1)_2^2. \\ \Box \ D \ 2^{\aleph_0} \to (2^{\aleph_0})_2^2. \end{array}$

- (18) Only one of the following statements of cardinal arithmetic is provable in ZFC. Which one? $(\kappa, \lambda \text{ and } \mu \text{ are assumed to be infinite cardinal numbers.})$
 - $\Box \mathbf{A} \ (\kappa^+)^{\lambda} = \kappa^{\lambda} \cdot \kappa^+.$ \Box B if $\kappa \leq \lambda$ then $\kappa^{\lambda} = 2^{\lambda}$. $\Box C \text{ if } 2^{\operatorname{cf} \kappa} < \kappa \text{ then } \kappa^{\operatorname{cf} \kappa} = \kappa^+.$
 - \Box D if $\mu < \kappa$ and $\mu^{\lambda} \ge \kappa$ then $\kappa^{\lambda} = \mu^{\lambda}$.
- (19) Let M be a countable elementary substructure of $H(\aleph_3)$. Which of the following statements is true?
 - $\Box \land \omega_2 \subseteq M.$
 - $\square B \mathcal{P}(\omega) \in M.$
 - $\Box \subset \omega_1 \cap M$ is transitive.
 - \Box D $\omega_2 \cap M$ is transitive.
- (20) Which of the following statements is provable in ZFC?
 - \Box A There is a limit cardinal of cofinality \aleph_{ω} .
 - \square B There is a limit cardinal of cofinality \aleph_4 .
 - \Box C If κ is a regular limit cardinal then $\kappa = 2^{<\kappa}$.
 - \Box D There is a regular limit cardinal of cofinality \aleph_3 .
- (21) As in class we say that a theory S is stronger than a theory T is S proves the consistency of T. Which of the following statements, when added to ZFC, yields the weakest theory.
 - \Box A There is one Mahlo cardinal.
 - \square B There are two Mahlo cardinals.
 - \Box C There is an inaccessible cardinal that is a limit of Mahlo cardinals.
 - \Box D There is a proper class of inaccessible cardinals.
- (22) Which of the following is provable in ZFC plus SCH (the Singular Cardinal Hypothesis):
 - \Box A If the GCH holds below \aleph_{ω_1} then $\aleph_{\omega_1}^{\aleph_0} = \aleph_{\omega_1+1}$.
 - \square B If the GCH holds below \aleph_{ω_1} then then $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega_1+1}$.

 - $\Box C \text{ If } \aleph_{\omega_1} \text{ is a strong limit then } \aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega_1}.$ $\Box D \text{ If } \aleph_{\omega_1} \text{ is a strong limit then } 2^{\aleph_{\omega_1}} = \aleph_{\omega_1+2}.$
- (23) Who was the author of a book entitled *Paradoxien des Unendlichen* in which he disputed the rejection of the *actual infinite* that had had a dubious philosophical status since Aristotle's times?
 - \Box A Georg Cantor
 - \Box B Bernhard Bolzano
 - \Box C Ernst Zermelo
 - D Johann von Neumann
- (24) Let κ be the *first* uncountable measurable cardinal number (we assume it exists); one of the following statements is not true, which:
 - \Box A Some σ -complete ultrafilter on κ is κ -complete.
 - \Box B Every σ -complete ultrafilter on κ is κ -complete.
 - \Box C κ is a limit cardinal.
 - \Box D κ is weakly compact.

- (25) Which property characterizes weakly compact cardinals among the uncountable cardinals. □ A The tree property.
 - \square B The property $\kappa \to (\kappa)_2^2$.
 - \Box C Weak compactness of $\mathcal{L}_{\kappa,\omega}$ -languages.
 - \Box D Having a σ -complete ultrafilter.

Exercise II (15 points).

Prove that the Axiom of Replacement implies the Axiom of Separation (on the basis of the other axioms of set theory).

Exercise III (20 points).

Prove Kőnig's inequality: if $\kappa_i < \lambda_i$ for all $i \in I$, where the κ_i and λ_i are cardinal numbers, then

$$\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$$

Specifically:

- (1) Construct an explicit injection from $\bigcup_{i \in I} \{i\} \times \kappa_i$ into the product $\prod_{i \in I} \lambda_i$
- (2) Show that there is no surjection from $\bigcup_{i \in I} \{i\} \times \kappa_i$ onto the product $\prod_{i \in I} \lambda_i$

Exercise IV (20 points).

Define a relation \prec among ordered pairs of ordinals by $\langle \alpha, \beta \rangle \prec \langle \gamma, \delta \rangle$ if $\alpha + \beta < \gamma + \delta$ or $\alpha < \gamma$.

- (1) Prove that \prec well-orders the class of ordered pairs of ordinals and that for every $\langle \gamma, \delta \rangle$ the class $\{\langle \alpha, \beta \rangle : \langle \alpha, \beta \rangle \prec \langle \gamma, \delta \rangle\}$ is a set
- (2) Prove that if κ is a cardinal number then the order type of $\kappa \times \kappa$ with respect to \prec is equal to κ .

Exercise V (29 points).

Remember that we said that \mathcal{L} satisfies the κ -weak compactness theorem if for every \mathcal{L} -language \mathcal{L}_S , the following statement is true:

If Σ is a set of \mathcal{L}_S -sentences such that $|\Sigma| \leq \kappa$ and every $\Sigma_0 \subseteq \Sigma$ with cardinality less than κ has a model, then Σ has a model.

- (1) Give precise definitions of $\mathcal{L}_{\kappa\omega}$ and $\mathcal{L}_{\kappa\kappa}$ (4 points).
- (2) Prove that if $\mathcal{L}_{\kappa\kappa}$ satisfies the κ -weak compactness theorem, then so does $\mathcal{L}_{\kappa\omega}$ (5 points).
- (3) Consider the $\mathcal{L}_{\aleph_{\omega}\omega}$ -language \mathcal{L}^* with constants $\{c_{\alpha} ; \alpha \leq \aleph_{\omega}\}$ and a binary relation R. Construct a set of \mathcal{L}^* -sentences Σ such that
 - (a) $|\Sigma| \leq \aleph_{\omega}$,
 - (b) if $\mathcal{M} = (M, x_{\alpha}, <) \models \Sigma$, then $\{x_{\aleph_n} ; n \in \omega\}$ is <-cofinal in M (i.e., for every $x \in M$ there is an $n \in \omega$ such that $x < x_{\aleph_n}$), and
 - (c) if $\mathcal{M} = (M, x_{\alpha}, <) \models \Sigma$, then

if for all $\beta < \alpha$, $\mathcal{M} \models c_{\beta} R c_{\aleph_{\omega}}$, then $\mathcal{M} \models c_{\alpha} R c_{\aleph_{\omega}}$.

Prove all claims about the properties of Σ . (15 points)

(4) Use the set Σ constructed in (3) to show that \aleph_{ω} is not a weakly compact cardinal (5 points).