

Mastermath Exam Set Theory 25-06-2013; 16:00–19:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–16. Record your answers to the multiple-choice questions in a readable table on the exam paper.

- (2) 1. Given our definitions of ordered pairs $(\langle x, y \rangle = \{\{x\}, \{x, y\}\})$ and natural numbers $(n = \{0, \dots, n-1\})$, which of the following is true:
 - A. $\langle 1, 2 \rangle \subseteq 3$
 - B. $\{1,2\} \subseteq 3$
 - C. $3 \subseteq \langle 1, 2 \rangle$
 - D. $3 \subseteq \{1, 2\}$
- (2) 2. Consider the structure $\langle \mathbb{N}, \langle \rangle$, for the language of set theory. Which of the following axioms of ZF *does* not hold in this structure.
 - A. Power Set
 - B. Pairing
 - C. Regularity
 - D. Extensionality
- (2) 3. Which of the following is a filter on \mathbb{R} :
 - A. $\{A \subseteq \mathbb{R} : A \text{ is uncountable}\}$
 - B. $\{A \subseteq \mathbb{R} : A \text{ has cardinality } |\mathbb{R}|\}$
 - C. $\{A \subseteq \mathbb{R} : A \text{ is open}\}$
 - D. $\{A \subseteq \mathbb{R} : |\mathbb{R} \setminus A| < |\mathbb{R}|\}$
- (2) 4. Assume ZFC. The set $H(\aleph_2)$, viewed as a structure for the language of Set Theory, does *not* satisfy which axiom:
 - A. Choice
 - B. Replacement
 - C. Power set
 - D. Pairing
- (2) 5. Let κ be a regular and uncountable cardinal; which statement about subsets of κ is *not* true: A. Every stationary set is unbounded
 - B. Every cub set is stationary
 - C. Every unbounded set has cardinality κ
 - D. Every unbounded set is stationary
- (2) 6. Which of the following *ordinal* inequalities does hold:
 - A. $2^{\omega} < 3^{\omega}$ B. $\omega^2 < \omega^3$
 - C. $2\cdot\omega<3\cdot\omega$
 - D. $2+\omega < 3+\omega$

More problems on the next page.

- (2) 7. Which of the following cardinal inequalities does not hold:
 A. 2^{ℵ0} < 3^{ℵ0}
 B. ℵ₀²⁰¹³ < ℵ₂₀₁₃
 C. ℵ_ω < ℵ_ω^{ℵ0}
 - D. $2^{\aleph_0} < 2^{2^{\aleph_0}}$
- (2) 8. Let $\kappa > 2^{\aleph_1}$ be regular. Which of the following is *not* provable about countable elementary substructures of $H(\kappa)$:
 - A. if S is stationary in ω_1 then for every M: if $S \in M$ then $M \cap \omega_1 \in S$
 - B. if S is stationary in ω_1 then there is an M such that $S \in M$ and $M \cap \omega_1 \in S$
 - C. if C is cub in ω_1 then for every M: if $C \in M$ then $M \cap \omega_1 \in C$
 - D. if C is cub in ω_1 then there is an M such that $C \in M$ and $M \cap \omega_1 \in C$
- (2) 9. Which of the following partition relations is *not* provable in ZFC:

A. $\aleph_2 \rightarrow (\aleph_0, \aleph_1)^2$ B. $\aleph_2 \rightarrow (2013, \aleph_2)^2$ C. $\aleph_2 \rightarrow (\aleph_2, \aleph_2)^2$ D. $9 \rightarrow (4, 3)^2$

- (2) 10. "The GCH holds below \aleph_{η} " means that $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all $\alpha < \eta$. Which of the following implications is *not* provable in ZFC:
 - A. If the GCH holds below \aleph_{ω} then $\aleph_{\omega}^{\aleph_0} < \aleph_{\omega_4}$
 - B. If the GCH holds below \aleph_{2013} then $\aleph_{2013}^{\aleph_{2013}} = \aleph_{2014}$
 - C. If the GCH holds below \aleph_{ω_2} then $2^{\aleph_{\omega_2}} = \aleph_{\omega_2+1}$
 - D. If the GCH holds below \aleph_{ω_1} then $\aleph_{\omega_1}^{\aleph_0} = \aleph_{\omega_1}$
- (2) 11. The weakest assumption needed to prove the statement " $|X| \leq |Y|$ if there is a surjection $f: Y \to X$ " is A. ZF
 - B. ZF plus the Countable Axiom of Choice
 - C. ZF plus the Principle of Dependent Choices
 - D. ZFC
- (2) 12. Which of the following statements is provable in ZFC (κ , λ and μ denote *infinite* cardinals):
 - A. $\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2}$ B. If $\mu < \kappa$ and $\mu^{\lambda} > \kappa$ then $\kappa^{\lambda} = \mu^{\lambda}$ C. If $\kappa < \lambda$ then $\kappa^{\mu} < \lambda^{\mu}$ D. If $\kappa < \lambda$ then $\mu^{\kappa} < \mu^{\lambda}$

More problems on the next page.

- 13. Recall that a set A is *finite* if there are $n \in \mathbb{N}$ and a bijection $f : n \to A$. Define A to be *D*-finite if every injective map $f : A \to A$ is surjective. In this problem we do not assume the Axiom of Choice. Prove:
- (7) a. (by induction) Every $n \in \mathbb{N}$ set is D-finite (hence every finite set is D-finite).
- (4) b. \mathbb{N} is not D-finite.
- (7) c. For a set A the following are equivalent
 - (1) A is not D-finite
 - (2) |A| + 1 = |A|, i.e., there is a bijection $f : A \to A \cup \{p\}$, where $p \notin A$
 - (2) $|\mathbb{N}| \leq |A|$, i.e., there is an injection $f: \mathbb{N} \to A$
- (8) 14. Prove the first non-trivial version of Ramsey's theorem:

$$\aleph_0 \to (\aleph_0)_2^2$$

- (8) 15. a. Prove the following version of the Δ -system lemma: assume $2^{\aleph_0} = \aleph_1$ and let $\langle A_\alpha : \alpha \in \omega_2 \rangle$ be a sequence of countable sets. Then there are a countable set R and a subset T of ω_2 such that $|T| = \aleph_2$ and $\{A_\alpha : \alpha \in T\}$ is a Δ -system with root R. *Hint*: Think of the set $\{\alpha \in \omega_2 : \text{cf } \alpha = \aleph_1\}$ and, possibly, the pressing-down lemma.
- (8) b. Let A be the set of functions from ω to 2. Prove that if $B \subseteq A$ is a Δ -system then $|B| \leq 2$. *Hint*: Functions are *sets* of ordered pairs.
 - 16. For ordinal-valued functions f and g with domain ω_1 we define $f \prec g$ to mean that $\{\alpha : f(\alpha) \ge g(\alpha)\}$ is not stationary.
- (8) a. Prove that \prec is a well-founded partial order.

We denote the associated rank function by $\|\varphi\|$, so that $\|\varphi\| = \sup\{\|\psi\| + 1 : \psi \prec \varphi\}$.

- (8) b. Prove $\|\varphi\| < \omega_1$ if and only if there is $\beta \in \omega_1$ such that $\{\alpha \in \omega_1 : \varphi(\alpha) = \beta\}$ is stationary, and in that case $\|\varphi\|$ is equal to the smallest such β .
- (8) c. Determine the rank of the identity function on ω_1 .

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$\text{Grade} = \frac{\text{Total} + 10}{10}$$

and rounded in the standard way.

THE END