

Mastermath Exam Set Theory 17-06-2016; 14:00–17:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–16. Record your answers to the multiple-choice questions in a readable table on the exam paper.

(2) 1. Given our definitions of ordered pairs $((x, y) = \{\{x\}, \{x, y\}\})$ and natural numbers $(n = \{0, \dots, n-1\})$, which of the following is true:

A. $(0, 1) = \{1, 2\}$ B. $(1, 2) \subseteq 3$ C. $3 \cap (0, 1) = \emptyset$ D. $3 \subseteq (0, 1)$

- (2) 2. Consider the structure $(\mathbb{Z}, <)$, for the language of set theory (so \in is replaced by < in every formula). Which of the following axioms of ZF does hold in this structure.
 - A. Pairing
 - B. Regularity
 - C. Union
 - D. Infinity
- (2) 3. Assume ZF. The set V_{ω} , viewed as a structure for the language of Set Theory, **does not** satisfy which axiom:
 - A. Choice
 - B. Replacement
 - C. Power set
 - D. Infinity
- (2) 4. Which of the following *ordinal* inequalities **does** hold:
 - A. $\omega^{2015} < \omega^{2016}$
 - B. $2^\omega < 2016^\omega$
 - C. $2\cdot\omega<2016\cdot\omega$
 - D. $2+\omega < 2016+\omega$
- (2) 5. The statement "for all sets X and Y we have $|X| \leq |Y|$ or $|Y| \leq |X|$ " is
 - A. provable from ZF
 - B. provable from ZF plus the Principle of Dependent Choices
 - C. provable from ZFC but weaker than AC
 - D. equivalent to $\mathsf{AC},$ provably in ZF
- (2) 6. Which of the following *cardinal* inequalities **does not** hold (in ZFC):
 - A. $2^{\aleph_0} < 2016^{\aleph_0}$
 - B. $\aleph_0^{2016} < \aleph_0^{\aleph_0}$
 - C. $\aleph_{\omega} < \aleph_{\omega}^{\aleph_{2016}}$
 - D. $\aleph_{2017} \leqslant 2^{\aleph_{2016}}$

More problems on the next page.

(2) 7. Assume $2^{\aleph_n} = \aleph_{\omega+2016}$ for $n \ge 2016$. Then the value of $2^{\aleph_{\omega}}$ is

- A. smaller than $\aleph_{\omega+2016}$
- B. equal to $\aleph_{\omega+2016}$
- C. larger than $\aleph_{\omega+2016}$
- D. still undetermined
- (2) 8. Which of the following statements is not provable in ZFC (κ , λ , and μ denote *infinite* cardinals):

A. $\aleph_{\alpha+2016}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2016}$ B. If $\kappa \leq \lambda$ then $\kappa^{\lambda} = \aleph_{0}^{\lambda}$ C. If $\kappa < \lambda$ then $\kappa^{\mu} < \lambda^{\mu}$ D. If $\kappa \leq \lambda$ then $\mu^{\kappa} \leq \mu^{\lambda}$

- (2) 9. Which of the following partition relations is provable in ZFC:
 - $$\begin{split} & \text{A. } \aleph_3 \to (\aleph_3, \aleph_3)^2 \\ & \text{B. } \aleph_3 \to (\aleph_3, \aleph_0)^2 \\ & \text{C. } \aleph_3 \to (\aleph_3, \aleph_1)^2 \\ & \text{D. } \aleph_3 \to (\aleph_3, \aleph_2)^2 \end{split}$$
- (2) 10. Which of the following families is not an ideal of sets on ω :
 - A. $\{A : \lim_{n \to \infty} 2^{-n} | A \cap 2^n | = 0\}$ B. $\{A : \sum_{n \in A} 2^{-n} < \infty\}$ C. $\{A : \sum_{n \in A} (n+1)^{-1} < \infty\}$ D. $\{A : (\exists k) (\forall n) (|A \cap [2^n, 2^{n+1})| \leq k)\}$
- (2) 11. Which of the following notions is not expressible by means of a Δ_0 -formula (assuming ZF):

A. x is an ordered pair

- B. $x = \omega$
- C. x is an ordinal
- D. $x = \omega_1$
- (2) 12. Let M a transitive model of ZFC; which of the following is not absolute for M:
 - A. x is a wellorder of y
 - B. $x = \omega$
 - C. x is the cartesian product of two sets
 - D. x is the cardinal number of y
 - 13. Assume $\langle A_n : n \in \omega \rangle$ is a sequence of sets, each consisting of two points, without a choice function. (Clearly in this problem we *do not* assume the Axiom of Choice.) Define T to be the set of functions, t, such that dom $t \in \omega$ and $t(i) \in A_i$ for all $i \in \text{dom } t$.
- (5) a. Prove that T actually is a set and indicate which axioms you use.
- (4) b. Prove that T is a tree, with all levels finite.
- (3) c. Define a surjective map $s: T \to \omega$.
- (5) d. Prove that there is no injective map from ω to T, and in particular that there is no infinite branch in T.

More problems on the next page.

14. The Erdős-Dushnik-Miller theorem states

$$\kappa \to (\kappa, \aleph_0)^2$$

- (6) a. Formulate the meaning of the statement of the theorem
- (10) b. Prove the statement for the case where κ is a *regular* cardinal.
 - 15. A free ultrafilter, \mathcal{Q} , on ω is called a Q-point if for every partition $\{P_n : n \in \omega\}$ of ω into finite sets there is a $U \in \mathcal{Q}$ such that $|U \cap P_n| \leq 1$ for all n.
- (3) a. Prove: an ultrafilter on ω is Ramsey if and only if it is both a *P*-point and a *Q*-point
- (4) b. Prove: \mathcal{Q} is a Q-point if and only of for every strictly increasing function $f: \omega \to \omega$ there is a $U \in \mathcal{Q}$ such that $|U \cap [f(n), f(n+1))| \leq 1$ for all n.
- (5) c. There exist non-Q-points. *Hint*: Consider the family $\{I : I \subseteq \omega \text{ and } (\exists k)(\forall n)(|I \cap [2^n, 2^{n+1})| \leq k)\}$ For an infinite subset A of ω we let $c_A : \omega \to A$ denote the unique order-isomorphism.
- (4) d. Prove: if \mathcal{Q} is a Q-point then for every function $f : \omega \to \omega$ there is $A \in \mathcal{Q}$ such that $f(n) < c_A(n)$ for all n. Hint: w.l.o.g. f is strictly increasing
 - 16. We use $H(\omega_1)$ to denote the set of *hereditarily countable sets*. That is: $x \in H(\omega_1)$ iff TC(x), the transitive closure of x, is countable.
- (3) a. Prove: if x is a countable subset of $H(\omega_1)$ then x is an element of $H(\omega_1)$.
- (3) b. Prove that $H(\omega_1)$ satisfies the Axiom (schema) of Replacement.
- (3) c. Prove: for every countable transitive set x there is a well-founded relation E on ω such that x is the transitive collapse of (ω, E) .
- (4) d. Prove: $L_{\omega_1} \subseteq H(\omega_1) \subseteq V_{\omega_1}$.
- (4) e. Prove: if V = L then $L_{\omega_1} = H(\omega_1)$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$\text{Grade} = \frac{\text{Total} + 10}{10}$$

and rounded in the standard way.