Mastermath Exam Set Theory
17-06-2016; 14:00-17:00.
This exam consists of multiple-choice questions, 1-12, and open questions, 13-16.
Record your answers to the multiple-choice questions in a readable table on the exam paper.
(2) 1. Given our definitions of ordered pairs $((x, y)=\{\{x\},\{x, y\}\})$ and natural numbers $(n=\{0, \ldots, n-1\})$, which of the following is true:
A. $(0,1)=\{1,2\}$
B. $(1,2) \subseteq 3$
C. $3 \cap(0,1)=\emptyset$
D. $3 \subseteq(0,1)$
(2) 2. Consider the structure $(\mathbb{Z},<)$, for the language of set theory (so \in is replaced by $<$ in every formula). Which of the following axioms of ZF does hold in this structure.
A. Pairing
B. Regularity
C. Union
D. Infinity
3. Assume ZF. The set V_{ω}, viewed as a structure for the language of Set Theory, does not satisfy which axiom:
A. Choice
B. Replacement
C. Power set
D. Infinity
(2) 4. Which of the following ordinal inequalities does hold:
A. $\omega^{2015}<\omega^{2016}$
B. $2^{\omega}<2016^{\omega}$
C. $2 \cdot \omega<2016 \cdot \omega$
D. $2+\omega<2016+\omega$
(2) 5. The statement "for all sets X and Y we have $|X| \leqslant|Y|$ or $|Y| \leqslant|X|$ " is
A. provable from ZF
B. provable from ZF plus the Principle of Dependent Choices
C. provable from ZFC but weaker than AC
D. equivalent to AC , provably in ZF
(2) 6. Which of the following cardinal inequalities does not hold (in ZFC):
A. $2^{\aleph_{0}}<2016^{\aleph_{0}}$
B. $\aleph_{0}^{2016}<\aleph_{0}^{\aleph_{0}}$
C. $\aleph_{\omega}<\aleph_{\omega}^{\aleph_{2016}}$
D. $\aleph_{2017} \leqslant 2^{\aleph_{2016}}$
(2) 7. Assume $2^{\aleph_{n}}=\aleph_{\omega+2016}$ for $n \geqslant 2016$. Then the value of $2^{\aleph_{\omega}}$ is
A. smaller than $\aleph_{\omega+2016}$
B. equal to $\aleph_{\omega+2016}$
C. larger than $\aleph_{\omega+2016}$
D. still undetermined
(2) 8. Which of the following statements is not provable in ZFC (κ, λ, and μ denote infinite cardinals):
A. $\aleph_{\alpha+2016}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2016}$
B. If $\kappa \leqslant \lambda$ then $\kappa^{\lambda}=\aleph_{0}^{\lambda}$
C. If $\kappa<\lambda$ then $\kappa^{\mu}<\lambda^{\mu}$
D. If $\kappa \leqslant \lambda$ then $\mu^{\kappa} \leqslant \mu^{\lambda}$
(2) 9. Which of the following partition relations is provable in ZFC:
A. $\aleph_{3} \rightarrow\left(\aleph_{3}, \aleph_{3}\right)^{2}$
B. $\aleph_{3} \rightarrow\left(\aleph_{3}, \aleph_{0}\right)^{2}$
C. $\aleph_{3} \rightarrow\left(\aleph_{3}, \aleph_{1}\right)^{2}$
D. $\aleph_{3} \rightarrow\left(\aleph_{3}, \aleph_{2}\right)^{2}$
(2) 10. Which of the following families is not an ideal of sets on ω :
A. $\left\{A: \lim _{n \rightarrow \infty} 2^{-n}\left|A \cap 2^{n}\right|=0\right\}$
B. $\left\{A: \sum_{n \in A} 2^{-n}<\infty\right\}$
C. $\left\{A: \sum_{n \in A}(n+1)^{-1}<\infty\right\}$
D. $\left\{A:(\exists k)(\forall n)\left(\left|A \cap\left[2^{n}, 2^{n+1}\right)\right| \leqslant k\right)\right\}$
(2) 11. Which of the following notions is not expressible by means of a Δ_{0}-formula (assuming ZF):
A. x is an ordered pair
B. $x=\omega$
C. x is an ordinal
D. $x=\omega_{1}$
(2) 12. Let M a transitive model of ZFC; which of the following is not absolute for M :
A. x is a wellorder of y
B. $x=\omega$
C. x is the cartesian product of two sets
D. x is the cardinal number of y
13. Assume $\left\langle A_{n}: n \in \omega\right\rangle$ is a sequence of sets, each consisting of two points, without a choice function. (Clearly in this problem we do not assume the Axiom of Choice.) Define T to be the set of functions, t, such that $\operatorname{dom} t \in \omega$ and $t(i) \in A_{i}$ for all $i \in \operatorname{dom} t$.
a. Prove that T actually is a set and indicate which axioms you use.
b. Prove that T is a tree, with all levels finite.
c. Define a surjective map $s: T \rightarrow \omega$.
d. Prove that there is no injective map from ω to T, and in particular that there is no infinite branch in T.
14. The Erdős-Dushnik-Miller theorem states

$$
\begin{equation*}
\kappa \rightarrow\left(\kappa, \aleph_{0}\right)^{2} \tag{6}
\end{equation*}
$$

a. Formulate the meaning of the statement of the theorem
(10) b. Prove the statement for the case where κ is a regular cardinal.
15. A free ultrafilter, \mathcal{Q}, on ω is called a Q-point if for every partition $\left\{P_{n}: n \in \omega\right\}$ of ω into finite sets there is a $U \in \mathcal{Q}$ such that $\left|U \cap P_{n}\right| \leqslant 1$ for all n.
a. Prove: an ultrafilter on ω is Ramsey if and only if it is both a P-point and a Q-point
b. Prove: \mathcal{Q} is a Q-point if and only of for every strictly increasing function $f: \omega \rightarrow \omega$ there is a $U \in \mathcal{Q}$ such that $|U \cap[f(n), f(n+1))| \leqslant 1$ for all n.
c. There exist non- Q-points. Hint: Consider the family $\left\{I: I \subseteq \omega\right.$ and $\left.(\exists k)(\forall n)\left(\left|I \cap\left[2^{n}, 2^{n+1}\right)\right| \leqslant k\right)\right\}$ For an infinite subset A of ω we let $c_{A}: \omega \rightarrow A$ denote the unique order-isomorphism.
(4) d. Prove: if \mathcal{Q} is a Q-point then for every function $f: \omega \rightarrow \omega$ there is $A \in \mathcal{Q}$ such that $f(n)<c_{A}(n)$ for all n. Hint: w.l.o.g. f is strictly increasing
16. We use $H\left(\omega_{1}\right)$ to denote the set of hereditarily countable sets. That is: $x \in H\left(\omega_{1}\right)$ iff $\mathrm{TC}(x)$, the transitive closure of x, is countable.
a. Prove: if x is a countable subset of $H\left(\omega_{1}\right)$ then x is an element of $H\left(\omega_{1}\right)$.
b. Prove that $H\left(\omega_{1}\right)$ satisfies the Axiom (schema) of Replacement.
c. Prove: for every countable transitive set x there is a well-founded relation E on ω such that x is the transitive collapse of (ω, E).
d. Prove: $L_{\omega_{1}} \subseteq H\left(\omega_{1}\right) \subseteq V_{\omega_{1}}$.
e. Prove: if $V=L$ then $L_{\omega_{1}}=H\left(\omega_{1}\right)$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$
\text { Grade }=\frac{\text { Total }+10}{10}
$$

and rounded in the standard way.

