

Mastermath Exam Set Theory 30-06-2016; 10:00-13:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–16. Record your answers to the multiple-choice questions in a readable table on the exam paper.

- (2) 1. Given our definitions of ordered pairs $((x, y) = \{\{x\}, \{x, y\}\})$ and natural numbers $(n = \{0, \dots, n-1\})$, which of the following is true:
 - A. (0,0) = 1
 - B. $(0,0) \ni 1$
 - C. $(0,0) \in 1$
 - D. none of the above
- (2) 2. Consider the structure $(\mathbb{Z}, <)$, for the language of set theory (so \in is replaced by < in every formula). Which of the following axioms of ZF **does not** hold in this structure.
 - A. Extensionality
 - B. Power set
 - C. Pairing
 - D. Union
- (2) 3. Assume ZF. The set $V_{\omega+\omega}$, viewed as a structure for the language of Set Theory, **does not** satisfy which axiom:
 - A. Union
 - B. Replacement
 - C. Power set
 - D. Infinity
- (2) 4. Which of the following *ordinal* inequalities **does not** hold:
 - A. $\omega^{2015} < \omega^{2016}$
 - B. $\omega \cdot 2015 < \omega \cdot 2016$
 - C. $\omega+2015<\omega+2016$
 - D. $2015^{\omega} < 2016^{\omega}$
- (2) 5. Which of the following statements is not equivalent to the Axiom of Choice, in ZF
 - A. the Ultrafilter Theorem
 - B. Zorn's Lemma
 - C. the equality $|X| = |X \times X|$ holds for every infinite set X
 - D. the Well-ordering Theorem
- (2) 6. Which of the following *cardinal* inequalities **does** hold (in ZFC):
 - A. $2015^{\aleph_0} < 2016^{\aleph_0}$
 - B. $\aleph_0^{2015} < \aleph_0^{2016}$
 - C. $\beth_{2015} < \beth_{2016}$
 - D. $\aleph_0 \cdot 2015 < \aleph_0 \cdot 2016$

More problems on the next page.

- (2) 7. Assume $2^{\aleph_{\alpha}} = \aleph_{\omega_1+2016}$ for all countable ordinals $\alpha \ge 2016$. Then one possible value for $2^{\aleph_{\omega_1+1}}$ is
 - A. \aleph_{ω_1+2015}
 - B. \aleph_{ω_1+2016}
 - C. $\aleph_{\omega_1+\omega}$
 - D. none of the above
- (2) 8. Which of the following statements is provable in ZFC (κ , λ , and μ denote *infinite* cardinals):

A. $\aleph_{\alpha+2016}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2016}$ B. If $\kappa < \lambda$ then $\mu^{\kappa} < \mu^{\lambda}$ C. If $\kappa < \lambda$ then $\kappa^{\mu} < \lambda^{\mu}$ D. None of the above

- (2) 9. Which of the following partition relations is not provable in ZFC:
 - $$\begin{split} \text{A.} & (2^{\aleph_{2016}})^+ \to (\aleph_{2017})^2_{\aleph_{2016}} \\ \text{B.} & \aleph_{2016} \to (\aleph_{2016})^2_2 \\ \text{C.} & \aleph_{2016} \to (\aleph_{2016}, \aleph_0)^2 \\ \text{D.} & 2^{\aleph_{2016}} \not\to (\aleph_0)^2_{\aleph_{2016}} \end{split}$$
- (2) 10. Which of the following families is an ideal of sets on ω :
 - A. $\{A : \sum_{n \in A} 2^{-n} < \infty\}$ B. $\{A : \lim_{n \to \infty} 2^{-n} | A \cap 2^n | = 0\}$ C. $\{A : \sum_{n \in A} (n+1)^{-1} < 2016\}$ D. $\{A : (\forall n) (|A \cap [2^n, 2^{n+1})| \leq n)\}$
- (2) 11. Which of the following notions is expressible by means of a Δ_0 -formula (assuming ZF):
 - A. x is a well-order of y
 - B. x is a cardinal number
 - C. $x = \mathcal{P}(y)$
 - D. $z = x \times y$
- (2) 12. Let M be a transitive model of ZFC; which of the following is absolute for M:
 - A. $x = \mathcal{P}(L_{\alpha})$
 - B. $x = \mathbb{R}$
 - C. x is a cardinal number
 - D. x is a well-order of y
 - 13. In this problem we do not assume the Axiom of Choice. Remember that a set A is finite if there are $n \in \omega$ and a bijection $f : n \to A$. Define A to be K-finite if the following holds: every non-empty subfamily S of $\mathcal{P}(A)$ that satisfies "if $S \in S$ and $x \in A$ then $S \cup \{x\} \in S$ " also satisfies $A \in S$.
- (6) a. Prove: every $n \in \omega$ is K-finite (hence every finite set is K-finite).
- (5) b. Prove: ω is not K-finite.
- (5) c. Prove: every K-finite set is finite.

More problems on the next page.

14. Ramsey's theorem states

$$\aleph_0 \to (\aleph_0)_k^n$$

(6) a. Formulate the meaning of the statement of the theorem

(4) b. Show that for fixed n it suffices to prove Ramsey's theorem for the case that k = 2. Assume k = 2.

(7) c. Prove that the case n = 2 of Ramsey's theorem implies the case n = 3.

15. A filter, \mathcal{F} , on an infinite set, X, is uniform if |F| = |X| for all $F \in \mathcal{F}$.

- (4) a. Prove: every infinite set carries a uniform ultrafilter.
- (4) b. Let κ be an infinite cardinal number. From the fact, proven in class, that κ carries $2^{2^{\kappa}}$ many ultrafilters deduce that κ also carries $2^{2^{\kappa}}$ many uniform ultrafilters. *Hint*: work on $\kappa \times \kappa$.

Let \mathcal{U} be a free ultrafilter on ω_1 .

- (4) c. Prove: if \mathcal{U} is not uniform then there is a sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} such that $\bigcap_n U_n = \emptyset$.
- (5) d. Prove: if \mathcal{U} is uniform then there is a sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} such that $\bigcap_n U_n = \emptyset$. *Hint*: consider an injection $\iota : \omega_1 \to \mathbb{R}$ and for rational q the sets $\{\alpha : \iota(\alpha) < q\}$ and $\{\alpha : \iota(\alpha) > q\}$.
 - 16. We use $H(\omega_0)$ to denote the set of *hereditarily finite sets*. That is: $x \in H(\omega_0)$ iff TC(x), the transitive closure of x, is finite.
- (4) a. Prove: if x is a finite subset of $H(\omega_0)$ then x is an element of $H(\omega_0)$.
- (4) b. Prove that $H(\omega_0)$ satisfies the Axiom (schema) of Replacement.
- (4) c. Prove: $L_{\omega} \subseteq H(\omega_0) \subseteq V_{\omega}$.
- (4) d. Prove: $L_{\omega} = V_{\omega}$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$\text{Grade} = \frac{\text{Total} + 10}{10}$$

and rounded in the standard way.