

Mastermath Exam Set Theory 06-01-2017; 14:00-17:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–16. Record your answers to the multiple-choice questions in a readable table on the exam paper.

(2) 1. Given our definitions of ordered pairs, $(x, y) = \{\{x\}, \{x, y\}\}\)$, and natural numbers, $n = \{0, \dots, n-1\}$, which of the following **is not** true:

A. $(0, 1) \cap 3 = \emptyset$ B. $(0, 0) = \{1\}$ C. $(0, 1) = \{1, 2\}$

- D. $(0,1) = \bigcup (1,2)$
- (2) 2. Which of the following ordinal inequalities **does** hold:
 - A. $2^{\omega} < 2^{2017 \cdot \omega}$ B. $2 \cdot \omega < 2017 \cdot \omega$
 - C. $2^{\omega} < 2^{\omega \cdot 2017}$
 - D. $2 + \omega < 2^{2017} + \omega$
- (2) 3. Which of the following *cardinal* inequalities **does not** hold (in ZFC):
 - A. $\aleph_{2017}^{2017} < \aleph_{2018}$ B. $\aleph_{\omega} < \aleph_{\omega}^{\aleph_{2017}}$ C. $\aleph_{2018} \leqslant \aleph_{2017}^{\aleph_{2017}}$
 - D. $2^{\aleph_{2017}} < 2017^{\aleph_{2017}}$
- (2) 4. Which of the following is a filter on $\mathbb{N} \times \mathbb{N}$?

A. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : (n, n) \notin A\} \text{ is finite}\}$ B. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : |\{m : (n, m) \notin A\}| < \aleph_0\} \text{ is finite}\}$ C. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : |\{m : (n, m) \notin A\}| = \aleph_0\} \text{ is finite}\}$ D. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : |\{m : (n, m) \notin A\}| \ge n!\} \text{ is finite}\}$

- (2) 5. Assume $2^{\aleph_n} = \aleph_{\omega+n+2017}$ for $n \ge 2017$. Then the value of $2^{\aleph_{\omega}}$ is
 - A. still undetermined
 - B. smaller than $\aleph_{\omega+\omega}$
 - C. larger than $\aleph_{\omega+\omega}^{\aleph_0}$
 - D. equal to $\aleph_{\omega+\omega}^{\aleph_0}$
- (2) 6. Which of the following statements is not provable in ZFC (κ , λ , and μ denote *infinite* cardinals): A. If $\kappa \leq \lambda$ then $\kappa^{\lambda} > \aleph_{0}^{\lambda}$
 - B. $\aleph_{\alpha+2017}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2017}$
 - C. If $\kappa < \lambda$ then $\kappa^{\mu} \leq \lambda^{\mu}$
 - D. If $\kappa < \lambda$ then $\mu^{\kappa} \leqslant \mu^{\lambda}$

More problems on the next page.

(2) 7. Which of the following statements is not provably equivalent to the Axiom of Choice in ZF.

A. For all sets X and Y we have $|X| \leq |Y|$ or $|Y| \leq |X|$

- B. Every set has a linear order.
- C. Zorn's Lemma
- D. Every set has a well-order.
- (2) 8. Let \mathcal{U} be a free ultrafilter on ω . Which of the following families is an ultrafilter on ω .

A. $\{2A : A \in \mathcal{U}\}$, where $2A = \{2n : n \in A\}$ B. $\{A/2 : A \in \mathcal{U}\}$, where $A/2 = \{n : 2n \in A\}$ C. $\{A - 1 : A \in \mathcal{U}\}$, where $A - 1 = \{n : n + 1 \in A\}$ D. $\{^{2}\log A : A \in \mathcal{U}\}$, where $^{2}\log A = \{n : 2^{n} \in A\}$

- (2) 9. Which of the following partition relations is not provable in ZFC:
 - A. $(2^{\aleph_{2017}})^+ \to (\aleph_{2018})^2_{2017}$
 - B. $\aleph_{2018} \rightarrow (\aleph_{2017})^2_{\aleph_{2017}}$
 - C. $\aleph_{2016} \rightarrow (\aleph_{2016}, \aleph_0)^2$
 - D. $2^{\aleph_{2017}} \not\rightarrow (3)^2_{\aleph_{2017}}$
- (2) 10. Let κ be a regular uncountable cardinal. Which of the following statements about cub and stationary subsets of κ is true.
 - A. The intersection of two stationary sets is again stationary.
 - B. The intersection of 2017 cub sets is again cub.
 - C. The union of κ many non-stationary sets is not stationary.
 - D. The intersection of a cub and a stationary set contains a cub set.
- (2) 11. Which of the following statements is not true
 - A. Every weakly compact cardinal has the tree property.
 - B. Every weakly compact cardinal is a strong limit.
 - C. Every weakly compact cardinal is regular.
 - D. Every cardinal with the tree property is weakly compact.
- (2) 12. Which of the following statements about the measurable cardinal κ is not true.
 - A. $\{\lambda < \kappa : \lambda \text{ is weakly compact}\}$ is stationary in κ .
 - B. There is a normal ultrafilter on $\kappa.$
 - C. If $2^{\lambda} = \lambda^+$ for all cardinals λ below κ then $2^{\kappa} = \kappa^+$.
 - D. The cardinal κ^+ is also measurable.

More problems on the next page.

- 13. In this problem we do not assume the Axiom of Choice. Recall that a set A is finite if there are $n \in \mathbb{N}$ and a bijection $f : n \to A$. Define A to be D-finite if every injective map $f : A \to A$ is surjective and D-infinite when it is not D-finite. Prove:
- (7) a. (by induction) Every $n \in \mathbb{N}$ set is D-finite (hence every finite set is D-finite).
- (4) b. \mathbb{N} is D-infinite.
- (7) c. For a set A the following are equivalent
 - (1) A is D-infinite
 - (2) |A| + 1 = |A|, i.e., there is a bijection $f : A \to A \cup \{p\}$, where $p \notin A$
 - (2) $|\mathbb{N}| \leq |A|$, i.e., there is an injection $f: \mathbb{N} \to A$
- (16) 14. Prove the first non-trivial instance of the Erdős-Dushnik-Miller theorem:

$$\aleph_1 \to (\aleph_1, \aleph_0)^2$$

- 15. Let $f : \omega_1 \to \mathbb{R}$ be an injective map. For $q \in \mathbb{Q}$ put $A_q = \{\alpha : f(\alpha) < q\}$ and $B_q = \{\alpha : f(\alpha) > q\}$. Let $I = \{q : A_q \text{ contains a cub set}\}$ and $J = \{q : B_q \text{ contains a cub set}\}$.
- (4) a. Prove: if $p \in I$ and $q \in J$ then q < p.
- (4) b. Prove: $I \neq \mathbb{Q}$ and $J \neq \mathbb{Q}$.
- (4) c. Prove: $\sup J < \inf I$ (by convention: $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$).
- (4) d. Prove: there is a $q \in \mathbb{Q}$ such that both A_q and B_q are stationary.
- (16) 16. Let κ be a measurable cardinal, with a normal ultrafilter \mathcal{D} , and let $\langle A_{\alpha} : \alpha < \kappa \rangle$ be a sequence of sets such that $A_{\alpha} \subseteq \alpha$ for all α . Prove that there is a subset A of κ such that $\{\alpha : A \cap \alpha = A_{\alpha}\}$ is stationary. *Hint*: Consider the partition $F : [\kappa]^2 \to \{0,1\}$ defined by $F(\{\beta,\alpha\}) = 1$ if $A_{\beta} = A_{\alpha} \cap \beta$ and $F(\{\beta,\alpha\}) = 0$ if $A_{\beta} \neq A_{\alpha} \cap \beta$. Prove there is $X \in \mathcal{D}$ such that $F[[X]^2] = \{1\}$. To show that there is no $Y \in \mathcal{D}$ such that $F[[X]^2] = \{0\}$ you may use this special case of Exercise 10.6: if $f[\kappa]^2 \to \kappa$ if such that $f(x) < \min x$ whenever $\min x > 0$ then there is $Z \in \mathcal{D}$ such that f is constant on $[Z]^2$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$\text{Grade} = \frac{\text{Total} + 10}{10}$$

and rounded in the standard way.