Mastermath Exam Set Theory
06-01-2017; 14:00-17:00.
This exam consists of multiple-choice questions, 1-12, and open questions, 13-16.
Record your answers to the multiple-choice questions in a readable table on the exam paper.

1. Given our definitions of ordered pairs, $(x, y)=\{\{x\},\{x, y\}\})$, and natural numbers, $n=\{0, \ldots, n-1\}$, which of the following is not true:
A. $(0,1) \cap 3=\emptyset$
B. $(0,0)=\{1\}$
C. $(0,1)=\{1,2\}$
D. $(0,1)=\bigcup(1,2)$
(2) 2. Which of the following ordinal inequalities does hold:
A. $2^{\omega}<2^{2017 \cdot \omega}$
B. $2 \cdot \omega<2017 \cdot \omega$
C. $2^{\omega}<2^{\omega \cdot 2017}$
D. $2+\omega<2^{2017}+\omega$
(2) 3. Which of the following cardinal inequalities does not hold (in ZFC):
A. $\aleph_{2017}^{2017}<\aleph_{2018}$
B. $\aleph_{\omega}<\aleph_{\omega}^{\aleph_{2017}}$
C. $\aleph_{2018} \leqslant \aleph_{2017}^{\aleph_{2017}}$
D. $2^{\aleph_{2017}}<2017^{\aleph_{2017}}$
(2) 4. Which of the following is a filter on $\mathbb{N} \times \mathbb{N}$?
A. $\{A \subseteq \mathbb{N} \times \mathbb{N}:\{n:(n, n) \notin A\}$ is finite $\}$
B. $\left\{A \subseteq \mathbb{N} \times \mathbb{N}:\left\{n:|\{m:(n, m) \notin A\}|<\aleph_{0}\right\}\right.$ is finite $\}$
C. $\left\{A \subseteq \mathbb{N} \times \mathbb{N}:\left\{n:|\{m:(n, m) \notin A\}|=\aleph_{0}\right\}\right.$ is finite $\}$
D. $\{A \subseteq \mathbb{N} \times \mathbb{N}:\{n:|\{m:(n, m) \notin A\}| \geqslant n!\}$ is finite $\}$
(2) 5. Assume $2^{\aleph_{n}}=\aleph_{\omega+n+2017}$ for $n \geqslant 2017$. Then the value of $2^{\aleph_{\omega}}$ is
A. still undetermined
B. smaller than $\aleph_{\omega+\omega}$
C. larger than $\aleph_{\omega+\omega}^{\aleph_{0}}$
D. equal to $\aleph_{\omega+\omega}^{\aleph_{0}}$
(2) 6. Which of the following statements is not provable in ZFC (κ, λ, and μ denote infinite cardinals):
A. If $\kappa \leqslant \lambda$ then $\kappa^{\lambda}>\aleph_{0}^{\lambda}$
B. $\aleph_{\alpha+2017}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2017}$
C. If $\kappa<\lambda$ then $\kappa^{\mu} \leqslant \lambda^{\mu}$
D. If $\kappa<\lambda$ then $\mu^{\kappa} \leqslant \mu^{\lambda}$
(2) 7. Which of the following statements is not provably equivalent to the Axiom of Choice in ZF.
A. For all sets X and Y we have $|X| \leqslant|Y|$ or $|Y| \leqslant|X|$
B. Every set has a linear order.
C. Zorn's Lemma
D. Every set has a well-order.
(2) 8. Let \mathcal{U} be a free ultrafilter on ω. Which of the following families is an ultrafilter on ω.
A. $\{2 A: A \in \mathcal{U}\}$, where $2 A=\{2 n: n \in A\}$
B. $\{A / 2: A \in \mathcal{U}\}$, where $A / 2=\{n: 2 n \in A\}$
C. $\{A-1: A \in \mathcal{U}\}$, where $A-1=\{n: n+1 \in A\}$
D. $\left\{{ }^{2} \log A: A \in \mathcal{U}\right\}$, where ${ }^{2} \log A=\left\{n: 2^{n} \in A\right\}$
(2) 9. Which of the following partition relations is not provable in ZFC:
A. $\left(2^{\aleph_{2017}}\right)^{+} \rightarrow\left(\aleph_{2018}\right)_{2017}^{2}$
B. $\aleph_{2018} \rightarrow\left(\aleph_{2017}\right)_{\aleph_{2017}}^{2}$
C. $\aleph_{2016} \rightarrow\left(\aleph_{2016}, \aleph_{0}\right)^{2}$
D. $2^{\aleph_{2017}} \rightarrow(3)_{\aleph_{2017}}^{2}$
(2) 10. Let κ be a regular uncountable cardinal. Which of the following statements about cub and stationary subsets of κ is true.
A. The intersection of two stationary sets is again stationary.
B. The intersection of 2017 cub sets is again cub.
C. The union of κ many non-stationary sets is not stationary.
D. The intersection of a cub and a stationary set contains a cub set.
(2) 11. Which of the following statements is not true
A. Every weakly compact cardinal has the tree property.
B. Every weakly compact cardinal is a strong limit.
C. Every weakly compact cardinal is regular.
D. Every cardinal with the tree property is weakly compact.
(2) 12. Which of the following statements about the measurable cardinal κ is not true.
A. $\{\lambda<\kappa: \lambda$ is weakly compact $\}$ is stationary in κ.
B. There is a normal ultrafilter on κ.
C. If $2^{\lambda}=\lambda^{+}$for all cardinals λ below κ then $2^{\kappa}=\kappa^{+}$.
D. The cardinal κ^{+}is also measurable.
2. In this problem we do not assume the Axiom of Choice. Recall that a set A is finite if there are $n \in \mathbb{N}$ and a bijection $f: n \rightarrow A$. Define A to be D-finite if every injective map $f: A \rightarrow A$ is surjective and D-infinite when it is not D-finite. Prove:
a. (by induction) Every $n \in \mathbb{N}$ set is D-finite (hence every finite set is D-finite).
b. \mathbb{N} is D-infinite.
c. For a set A the following are equivalent
(1) A is D-infinite
(2) $|A|+1=|A|$, i.e., there is a bijection $f: A \rightarrow A \cup\{p\}$, where $p \notin A$
(2) $|\mathbb{N}| \leqslant|A|$, i.e., there is an injection $f: \mathbb{N} \rightarrow A$
(16) 14. Prove the first non-trivial instance of the Erdős-Dushnik-Miller theorem:

$$
\aleph_{1} \rightarrow\left(\aleph_{1}, \aleph_{0}\right)^{2}
$$

15. Let $f: \omega_{1} \rightarrow \mathbb{R}$ be an injective map. For $q \in \mathbb{Q}$ put $A_{q}=\{\alpha: f(\alpha)<q\}$ and $B_{q}=\{\alpha: f(\alpha)>q\}$. Let $I=\left\{q: A_{q}\right.$ contains a cub set $\}$ and $J=\left\{q: B_{q}\right.$ contains a cub set $\}$.
a. Prove: if $p \in I$ and $q \in J$ then $q<p$.
b. Prove: $I \neq \mathbb{Q}$ and $J \neq \mathbb{Q}$.
c. Prove: $\sup J<\inf I$ (by convention: $\sup \emptyset=-\infty$ and $\inf \emptyset=\infty$).
d. Prove: there is a $q \in \mathbb{Q}$ such that both A_{q} and B_{q} are stationary.
(16) 16. Let κ be a measurable cardinal, with a normal ultrafilter \mathcal{D}, and let $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ be a sequence of sets such that $A_{\alpha} \subseteq \alpha$ for all α. Prove that there is a subset A of κ such that $\left\{\alpha: A \cap \alpha=A_{\alpha}\right\}$ is stationary. Hint: Consider the partition $F:[\kappa]^{2} \rightarrow\{0,1\}$ defined by $F(\{\beta, \alpha\})=1$ if $A_{\beta}=A_{\alpha} \cap \beta$ and $F(\{\beta, \alpha\})=0$ if $A_{\beta} \neq A_{\alpha} \cap \beta$. Prove there is $X \in \mathcal{D}$ such that $F\left[[X]^{2}\right]=\{1\}$. To show that there is no $Y \in \mathcal{D}$ such that $F\left[[X]^{2}\right]=\{0\}$ you may use this special case of Exercise 10.6: if $f[\kappa]^{2} \rightarrow \kappa$ if such that $f(x)<\min x$ whenever $\min x>0$ then there is $Z \in \mathcal{D}$ such that f is constant on $[Z]^{2}$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$
\text { Grade }=\frac{\text { Total }+10}{10}
$$

and rounded in the standard way.

