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Chapter 1

Introduction

According to Reed and Simon [9], scattering theory is the study of an interacting system on
a time and/or distance scale which is large compared to the scale of the actual interaction.
This is a natural phenomenon occuring in several branches of physics; optics (think of the blue
sky), acoustics, x-ray, sonar, particle physics,. . . . In this course we focus on the mathematical
aspects of scattering theory, and on an important application in non-linear partial differential
equations.

1.1 Scattering theory

As an example motivating the first chapters we consider the following situation occuring in
quantum mechanics. Consider a particle of mass m moving in three-dimensional space R3

according to a potential V (x, t), x ∈ R3 the spatial coordinate and time t ∈ R. In quantum
mechanics this is modelled by a wave function ψ(x, t) satisfying

∫
R3 |ψ(x, t)|2 dx = 1 for all

time t, and the wave function is interpreted as a probability distribution for each time t. This
means that for each time t, the probability that the particle is in the set A ⊂ R3 is given by∫
A
|ψ(x, t)|2 dx. Similarly, the probability distribution of the momentum for this particle is

given by |ψ̂(p, t)|2, where

ψ̂(p, t) =
1(√
2π
)3 ∫

R3

e−ip·xψ(x, t) dx

is the Fourier transform of the wave function with respect to spatial variable x. (Here we
have scaled Planck’s constant ~ to 1.) Using the fact that the Fourier transform interchanges
differentiation and multiplication the expected value for the momentum can be expressed in
terms of a differential operator. The kinetic energy, corresponding to |p|2/2m, at time t of
the particle can be expressed as −1

2m
〈∆ψ, ψ〉, where we take the inner product corresponding

to the Hilbert space L2(R3) and ∆ is the three-dimensional Laplacian (i.e. with respect to
the spatial coordinates x).

1



2 Chapter 1: Introduction

The potential energy at time t of the particle is described by 〈V ψ, ψ〉, so that (total)
energy of the particle at time t can be written as

E = 〈Hψ,ψ〉, H =
−1

2m
∆ + V,

where we have suppressed the time-dependence. The operator H is known as the energy
operator, or as Hamiltonian, or as Schrödinger operator. In case the potential V is independent
of time and suitably localised in the spatial coordinate, we can view H as a perturbation of
the corresponding free operator H0 = −1

2m
∆. This can be interpreted that we have a ‘free’

particle scattered by the (time-independent) potential V . The free operator H0 is a well-
known operator, and we can ask how its properties transfer to the perturbed operator H.
Of course, this will depend on the conditions imposed on the potential V . In Chapter 2 we
study this situation in greater detail for the case the spatial dimension is 1, but the general
perturbation techniques apply in more general situations as well. In general the potentials for
which these results apply are called short-range potentials.

In quantum mechanics the time evolution of the wave function is determined by the time-
dependent Schrödinger equation

i
∂

∂t
ψ(x, t) = Hψ(x, t). (1.1.1)

We want to consider solutions that behave as solutions to the corresponding free time-
dependent Schrödinger equation, i.e. (1.1.1) with H replaced by H0, for time to ∞ or −∞.
In case of the spatial dimension being 1 and for a time-independent potential V , we study
this situation more closely in Chapter 2. We do this for more general (possibly unbounded)
self-adjoint operators acting a Hilbert space.

Let us assume that m = 1
2
, then we can write the solution to the free time-dependent

Schrödinger equation as

ψ(x, t) =

∫
R3

F (p) eip·xe−i|p|
2t2 dp,

where F (p) denotes the distribution of the momenta at time t = 0 (up to a constant). This
follows easily since the exponentials eip·x are eigenfunctions of H0 = −∆ for the eigenvalue
|p|2. For the general case the solution is given by

ψ(x, t) =

∫
R3

F (p)ψp(x) e−i|p|
2t2 dp,

where Hψp = |p|2 ψp and where we can expect ψp(x) ∼ eip·x if the potential V is sufficiently
‘nice’. We study this situation more closely in Chapter 4 in case the spatial dimension is one.

1.2 Inverse scattering method

As indicated in Section 4.2 we give an explicit relation between the potential q in the Schrö-
dinger operator − d2

dx2 + q and its scattering data consisting of the reflection and transition
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coefficient R and T in Chapter 4. To be specific, in Section 4.2 we discuss the transition
q 7→ {R, T}, which is called the direct problem, and in Section 4.4 we discuss the transition
{R, T} 7→ q, the inverse problem. In case we take a time-dependent potential q(x, t), the
scattering data also becomes time-dependent. It has been shown that certain non-linear
partial differential equations (with respect to t and x) for q imply that the corresponding time
evolution of the scattering data R and T is linear! Or, scattering can be used to linearise some
non-linear partial differential equations.

The basic, and most famous, example is the Korteweg-de Vries equation, KdV-equation
for short,

qt(x, t)− 6 q(x, t) qx(x, t) + qxxx(x, t) = 0,

which was introduced in 1894 in order to model the solitary waves encountered by James
Scott Russell in 1834 while riding on horseback along the canal from Edinburgh to Glasgow.
Although the Korteweg-de Vries paper “On the change of form of long waves advancing in
a rectangular canal, and on a new type of long stationary waves”, Philosophical Magazine,
39 (1895), 422–443, is now probably the most cited paper by Dutch mathematicians, the
KdV-equation lay dormant for a long time until it was rediscovered by Kruskal and Zabusky
in 1965 for the Fermi-Pasta-Ulam problem on finite heat conductivity in solids. Kruskal and
Zabusky performed numerical experiments, and found numerical evidence for the solitary
waves as observed by Scott Russell, which were named “solitons” by Kruskal and Zabusky.
The fundamental discovery made by Gardner, Greene, Kruskal and Miura in 1967 is that if q
is a solution to the KdV-equation, then the spectrum of the Schrödinger with time-dependent
potential q is independent of time, and moreover, the time evolution for the scattering data,
i.e. the reflection and transmission coefficient, is a simple linear differential equation. We
discuss this method in Chapter 5. In particular, we discuss some of the soliton solutions.

This gave way to a solution method, nowadays called the inverse scattering method, or
inverse spectral method, for classes of non-linear partial differential equations. Amongst
others, similar methods work for well-known partial differential equations such as the modified
KdV-equation qt − 6q2qx + qxxx = 0, the sine-Gordon equation qxt = sin q, the non-linear
Schrödinger equation qt = qxx + |q|2q, and many others. Nowadays, there are many families
of partial differential equations that can be solved using similar ideas by realising them as
conditions for isospectrality of certain linear problem. For the isospectrality we use the method
of Lax pairs in Section 5.3.

There have been several approaches and extensions to the KdV-equations, notably as
integrable systems with infinitely many conserved Poisson-commuting quantities. We refer to
[1], [8].

1.3 Overview

The contents of these lecture notes are as follows. In Chapter 6 we collect some results from
functional analysis, especially on unbounded self-adjoint operators and the spectral theorem,
Fourier analysis, especially related to Sobolev and Hardy spaces. For these results not many
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proofs are given, since they occur in other courses. In Chapter 6 we also discuss some results
on the spectrum and the essential spectrum, and for these results explicit proofs are given.
So Chapter 6 is to be considered as an appendix.

In Chapter 2 we study first the Schrödinger operator − d2

dx2 + q, and we give conditions on
q such that the Schrödinger operator is a unbounded self-adjoint operator with the Sobolev
space as the domain which is also the domain for the unperturbed Schrödinger operator − d2

dx2 .
For this we use a classical result known as Rellich’s perturbation theorem on perturbation of
unbounded self-adjoint operators. We discuss the spectrum and the essential spectrum in this
case. It should be noted that we introduce general results, and that the Schrödinger operator
is merely an elaborate example.

In Chapter 3 the time-dependent Schrödinger operator is discussed. We introduce the
notions of wave operators, scattering states and the scattering operator. Again this is a
general procedure for two self-adjoint operators acting on a Hilbert space, and the Schrödinger
operator is an important example.

In Chapter 4 the discussion if specific for the Schrödinger operator. We show how to
determine the Jost solutions, and from this we discuss the reflection and transmission coeffi-
cient. The Gelfand-Levitan-Marchenko integral equation is derived, and the Gelfand-Levitan-
Marchenko equation is the key step in the inverse scattering method.

In Chapter 5 we study the Korteweg-de Vries equation, and we discuss shortly the original
approach of Gardner, Greene, Kruskal and Miura that triggered an enormous amount of
research. We then discuss the approach by Lax, and we show how to construct the N -soliton
solutions to the KdV-equation. We carry out the calculations for N = 1 and N = 2. This
chapter is not completely rigorous.

The lecture notes end with a short list of references, and an index of important and/or
useful notions which hopefully increases the readability. The main source of information for
Chapter 2 is Schechter [10]. Schechter’s book [10] is also relevant for Chapter 3, but for Chapter
3 also Reed and Simon [9] and Lax [7] have been used. For Chapter 4 several sources have
been used; especially Eckhaus and van Harten [4], Reed and Simon [9] as well as an important
original paper [3] by Deift and Trubowitz. For Chapter 5 there is an enormous amount of
information available; introductory and readable texts are by Calogero and Degasperis [2],
de Jager [6], as well as the original paper by Gardner, Greene, Kruskal and Miura [5] that
has been so influential. As remarked before, Chapter 6 is to be considered as an appendix,
and most of the results that are not proved can be found in general text books on functional
analysis, such as Lax [7], Werner [11], or the course notes for Applied Functional Analysis
(wi4203).



Chapter 2

Schrödinger operators and their
spectrum

In Chapter 6 we recall certain terminology, notation and results that are being used in Chapter
2.

2.1 The operator − d2

dx2

Theorem 2.1.1. − d2

dx2 with domain the Sobolev space W 2(R) is a self-adjoint operator on
L2(R).

We occasionally denote − d2

dx2 by L0, and then its domain by D(L0) = W 2(R). We first
consider the operator i d

dx
on its domain W 1(R).

Lemma 2.1.2. i d
dx

with domain the Sobolev space W 1(R) is self-adjoint.

Proof. The Fourier transform, see Section 6.3, intertwines i d
dx

with the multiplication operator
M defined by (Mf)(λ) = λf(λ). The domain W 1(R) under the Fourier transform is precisely
D(M) = {f ∈ L2(R) | λ 7→ λf(λ) ∈ L2(R)}, see Section 6.3. So (i d

dx
,W 1(R)) is unitarily

equivalent to (M,D(M)).
Observe that (M,D(M)) is symmetric;

〈Mf, g〉 =

∫
R
λ f(λ)g(λ) dλ = 〈f,Mg〉, ∀f, g ∈ D(M).

Assume now g ∈ D(M∗), or

D(M) 3 f 7→ 〈Mf, g〉 =

∫
R
λ f(λ)g(λ) dλ ∈ C

is a continuous functional on L2(R). By taking complex conjugates, this implies the existence
of a constant C such that∣∣∫

R
λg(λ)f(λ) dλ

∣∣ ≤ C‖f‖, ∀f ∈ W 1(R).

5



6 Chapter 2: Schrödinger operators and their spectrum

By the converse Hölder’s inequality, it follows that λ 7→ λg(λ) is square integrable, and
‖λ 7→ λg(λ)‖ ≤ C. Hence, D(M∗) ⊂ D(M), and since the reverse inclusion holds for any
densely defined symmetric operator, we find D(M) = D(M∗), and so (M,D(M)) is self-
adjoint. This gives the result.

Note that we actually have that the Fourier transform gives the spectral decomposition
of −i d

dx
. The functions x 7→ eiλx are eigenfunctions to −i d

dx
for the eigenvalue λ, and the

Fourier transform of f is just λ 7→ 〈f, eiλ·〉, and the inverse Fourier transform states that f is
a continuous linear combination of the eigenvectors, f = 1√

2π

∫
R〈f, e

iλ·〉eiλ· dλ.

Proof of Theorem 2.1.1. Observe that by Lemma 2.1.2

(i
d

dx
)∗(i

d

dx
) = − d2

dx2

as unbounded operators, since {f ∈ W 1(R) | f ′ ∈ W 1(R)} = W 2(R). Now the theorem
follows from Lemma 6.2.3.

Theorem 2.1.3. − d2

dx2 with domain W 2(R) has spectrum σ = [0,∞). There is no point
spectrum.

Proof. Let us first check for eigenfunctions, so we look for functions −f ′′ = λ f , or f ′′+λ f = 0.
This equation is easily solved; f is linear for λ = 0 and a combination of exponential functions
exp(±x

√
−λ) for λ 6= 0. There is no non-trivial combination that makes an eigenfunction

square-integrable, hence − d2

dx2 has no eigenvalues.
By the proof of Theorem 2.1.1 and Lemma 6.2.3 it follows that the spectrum is contained

in [0,∞). In order to show that the spectrum is [0,∞) we establish that any positive λ is
contained in the spectrum. Since the spectrum is closed, the result then follows.

So pick λ > 0 arbitrary. We use the description of Theorem 6.5.1, so we need to construct
a sequence of functions, say fn ∈ W 2(R), of norm 1, such that ‖−f ′′n−λ fn‖ → 0. By the first
paragraph ψ(x) = exp(iγx), with γ2 = λ, satisfies ψ′′ = λψ, but this function is not in L2(R).
The idea is to approximate this function in L2(R) using an approximation of the delta-function.
The details are as follows. Put φ(x) = 4

√
π/2 exp(−x2), so that ‖φ‖ = 1. Then define

φn(x) = (
√
n)−1φ(x/n) and define fn(x) = φn(x) exp(iγx). Then ‖fn‖ = ‖φn‖ = ‖φ‖ = 1,

and since fn is infinitely differentiable and fn and all its derivatives tend to zero rapidly as
x→ ±∞ (i.e. fn ∈ S(R), the Schwartz space), it obviously is contained in the domain W 2(R).
Now

f ′n(x) = φ′n(x)e
iγx + iγφn(x)e

iγx =
1

n
√
n
φ′(

x

n
)eiγx + iγφn(x)e

iγx

f ′′n(x) =
1

n2
√
n
φ′′(

x

n
)eiγx +

2iγ

n
√
n
φ′(

x

n
)− γ2φn(x)e

iγx,

so that

‖f ′′n + λfn‖ ≤
2|γ|
n
√
n
‖φ′( ·

n
)‖+

1

n2
√
n
‖φ′′( ·

n
)‖

=
2|γ|
n
‖φ′‖+

1

n2
‖φ′′‖ → 0, n→∞.
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So this sequence meets the requirements of Theorem 6.5.1, and we are done.

Again we use the Fourier transform to describe the spectral decomposition of − d2

dx2 . The

functions x 7→ cos(λx) and x 7→ sin(λx) are the eigenfunctions of − d2

dx2 for the eigenvalue
λ2 ∈ (0,∞). Observe that the Fourier transform as in Section 6.3 preserves the space of even
function, and that for even functions we can write the transform pair as

f̂(λ) =

√
2√
π

∫ ∞

0

f(x) cos(λx) dx, f(x) =

√
2√
π

∫ ∞

0

f̂(λ) cos(λx) dλ,

which is known as the (Fourier-)cosine transform.

Exercise 2.1.4. Derive the (Fourier-)sine transform using odd functions. By splitting an
arbitrary element f ∈ L2(R) into an odd and even part give the spectral decomposition of
− d2

dx2 .

Exercise 2.1.5. The purpose of this exercise is to describe the resolvent for L0 = − d2

dx2 . We
obtain that for z ∈ C\R, z = γ2, =γ > 0, we get

(L0 − z)−1f(x) =
−1

2γi

∫
R
e−iγ|x−y|f(y) dy

• Check that u(x) defined by the right hand side satisfies −u′′ − zu = f , and that this is
a bounded operator on L2(R).

• Instead of checking the result, we start with −u′′ − γ2u = f . Split this into two first
order differential equations;

(i
d

dx
+ γ)u = v, (i

d

dx
− γ)v = f.

Show that the second equation is solved by v(x) = eiγxC + i
∫ x

0
eiγ(x−y)f(y) dy, and that

the requirement v ∈ L2(R) fixes C. This gives v(x) = i
∫ x
−∞ eiγ(x−y)f(y) dy. Show that

‖v‖ ≤ 1
|=γ|‖f‖.

• Treat the other first order differential equation in a similar way to obtain the expres-
sion u(x) = −i

∫∞
x
eiγ(y−x)v(y) dy. Finally, express u in terms of f to find the explicit

expression for the resolvent operator.

2.2 The Schrödinger operator − d2

dx2 + q

Consider the multiplication operator

Q : L2(R) ⊃ D(Q) → L2(R), Q : f → qf (2.2.1)
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with domain D(Q) = {f ∈ L2(R) | qf ∈ L2(R)} for some fixed function q. We follow the
convention that the multiplication operator by a function, denoted by a small letter q, is
denoted by the corresponding capital letter Q. We always assume that q is a real-valued
function and that (Q,D(Q)) is densely defined, i.e. D(Q) is dense in L2(R).

Recall that we call a function q locally square integrable if
∫
B
|q(x)|2 dx < ∞ for each

bounded measurable subset B of R. So we see that in this case any function in C∞
c (R),

the space of infinitely many times differentiable functions having compact support, is in the
domain D(Q) of the corresponding multiplication operator Q. Since C∞

c (R) is dense in L2(R),
we see that for such potential q the domain D(Q) is dense.

We are only interested in so-called short range potentials. Loosely speaking, the potential
only affects waves in a short range. Mathematically, we want the potential q to have sufficient
decay.

Lemma 2.2.1. (Q,D(Q)) is a self-adjoint operator.

Exercise 2.2.2. Prove Lemma 2.2.1. Hint: use the converse Hölder’s inequality, cf. proof of
Lemma 2.1.2.

Exercise 2.2.3. 1. Which conditions on the potential q ensure that Q : L2(R) → L2(R) is
actually a bounded operator?

2. Determine the spectrum of Q in this case.

We study the Schrödinger1 operator − d2

dx2 + q which has domain W 2(R) ∩D(Q). In this
setting we call q the potential of the Schrödinger operator. The first question to be dealt with
is whether or not − d2

dx2 + q with this domain is self-adjoint or not. For this we use a 1939
perturbation Theorem 2.2.4 by Rellich2, and then we give precise conditions on the potential
function q such that the conditions of Rellich’s Perturbation Theorem 2.2.4 in this case are
met.

Theorem 2.2.4 (Rellich’s Perturbation Theorem). Let H be a Hilbert space. Assume T : H ⊃
D(T ) → H is a self-adjoint operator and S : H ⊃ D(S) → H is a symmetric operator, such
that D(T ) ⊂ D(S) and ∃ a < 1, b ∈ R

‖Sx‖ ≤ a ‖Tx‖+ b ‖x‖, ∀x ∈ D(T ),

then (T + S,D(T )) is a self-adjoint operator.

The infimum over all possible a is called the of S.
Note that in case S is a bounded self-adjoint operator, the statement is also valid. In this

case the estimate is valid with a = 0 and b = ‖S‖.
1Erwin Rudolf Josef Alexander Schrödinger, (12 August 1887 — 4 January 1961) Austrian physicist, who

played an important role in the development of quantum mechanics, and is renowned for the cat in the box.
2Franz Rellich (14 September 1906 — 25 September 1955) German mathematician, who made contributions

to mathematical physics and perturbation theory.
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Proof. Note that (T + S,D(T )) is obviously a symmetric operator. Since T is self-adjoint,
Ran(T − z) = H by Lemma 6.2.2 for all z ∈ C\R and R(z;T ) = (T − z)−1 ∈ B(H). In
particular, take z = iλ, λ ∈ R\{0}, then, since 〈Tx, x〉 ∈ R,

‖(T − iλ)x‖2 = ‖Tx‖2 + 2<(iλ〈Tx, x〉) + λ2 ‖x‖2

= ‖Tx‖2 + λ2 ‖x‖2, ∀x ∈ D(T ).

For y ∈ H arbitrary, pick x ∈ D(T ) such that (T − iλ)x = y, so that we get ‖y‖2 =
‖T (T − iλ)−1y‖2 + λ2‖(T − iλ)−1y‖2. This implies the basic estimates

‖y‖ ≥ ‖T (T − iλ)−1y‖, ‖y‖ ≥ |λ| ‖(T − iλ)−1y‖.

Now (T − iλ)−1y = x ∈ D(T ) ⊂ D(S) and

‖S(T − iλ)−1y‖ ≤ a‖T (T − iλ)−1y‖+ b‖(T − iλ)−1y‖

≤ a ‖y‖+
b

|λ|
‖y‖ = (a+

b

|λ|
) ‖y‖,

and since a+b/|λ| < 1 for |λ| sufficiently large it follows that ‖S(T−iλ)−1‖ < 1. In particular,
1 + S(T − iλ)−1 is invertible in B(H), see Sextion 6.2. Now

(S + T )− iλ = (T − iλ) + S =
(
1 + S(T − iλ)−1

)
(T − iλ),

where the equality also involves the domains, and we want to conclude that Ran(S + T −
iλ) = H. So pick x ∈ H arbitrary, we need to show that there exists y ∈ H such that(
(S + T )− iλ

)
y = x, and this can be rephased as (T − iλ)y =

(
1 + S(T − iλ)−1

)−1
x by the

invertibility for |λ| sufficiently large. Since Ran(T − iλ) = H such an element y ∈ H does
exist.

Finally, since S+T with dense domain D(T ) is symmetric, it follows by Lemma 6.2.2 that
it is self-adjoint.

We next apply Rellich’s Perturbation Theorem 2.2.4 to the case T equal − d2

dx2 and S equal
to Q. For this we need to rephrase the condition of Rellich’s Theorem 2.2.4, see Theorem
2.2.5(5), into conditions on the potential q.

Theorem 2.2.5. The following statements are equivalent:

1. W 2(R) ⊂ D(Q),

2. ‖qf‖2 ≤ C
(
‖f ′′‖2 + ‖f‖2

)
, ∀ f ∈ W 2(R),

3. sup
y∈R

∫ y+1

y

|q(x)|2 dx <∞,

4. ∀ε > 0 ∃K > 0 with ‖qf‖2 ≤ ε ‖f ′′‖2 +K ‖f‖2, ∀f ∈ W 2(R),



10 Chapter 2: Schrödinger operators and their spectrum

5. ∀ε > 0 ∃K > 0 with ‖qf‖ ≤ ε ‖f ′′‖+K ‖f‖, ∀f ∈ W 2(R).

So the − d2

dx2 -bound of Q is zero.

Corollary 2.2.6. If the potential q satisfies Theorem 2.2.5(3), then the Schrödinger operator
− d2

dx2 + q is self-adjoint on its domain W 2(R). In particular, this is true for q ∈ L2(R).

Proof of Theorem 2.2.5. (1) ⇒ (2): Equip W 2(R) with the graph norm of L =− d2

dx2 , denoted
by ‖·‖L, see Section 6.2, which in particular means thatW 2(R) with this norm is complete. We
claim that Q : (W 2(R), ‖ · ‖L) → L2(R) is a closed operator, then the Closed Graph Theorem
6.2.1 implies that it is bounded, which is precisely (2). To prove the closedness, we take a
sequence {fn}∞n=1 in D(Q) such that fn → f in (W 2(R), ‖ · ‖L) and qfn → g in L2(R). We
have to show that f ∈ D(Q) and qf = g. First, since fn → f and (W 2(R), ‖ · ‖L) is complete,
we have f ∈ W 2(R) ⊂ D(Q) by assumption (1). This assumption and Lemma 2.2.1 also
gives 〈qfn, h〉 = 〈fn, qh〉 for all h ∈ W 2(R). Taking limits, 〈g, h〉 = 〈f, qh〉 = 〈qf, h〉 since
convergence in (W 2(R), ‖ · ‖L) implies convergence in L2(R) by ‖ · ‖ ≤ ‖ · ‖L. Since W 2(R) is
dense in L2(R), we may conclude g = Q(f).

(2) ⇒ (3): Put φ(x) = e1−x
2
, so in particular φ ∈ W 2(R) and φ(x) ≥ 1 for x ∈ [0, 1]. Put

φy(x) = φ(x− y) for the translated function, then∫ y+1

y

|q(x)|2 dx ≤
∫

R
|q(x)φy(x)|2 dx ≤ C

(
‖φ′′y‖2 + ‖φy‖2

)
= C

(
‖φ′′‖2 + ‖φ‖2

)
<∞

since the integral is translation invariant.
(3) ⇒ (4): By Sobolev’s imbedding Lemma 6.3.1 we have W 2(R) ⊂ C1(R), so we can

apply the following lemma.

Lemma 2.2.7. Take f ∈ C1(R), then for each ε > 0 and all intervals I = [y, y + 1] we have

|f(x)|2 ≤ ε

∫
I

|f ′(t)|2 dt+ (1 +
1

ε
)

∫
I

|f(t)|2 dt, x ∈ I.

Denote by C the supremum in (3). For f ∈ W 2(R) ⊂ C1(R), we multiply the expression
in Lemma 2.2.7 by |q(x)|2 and integrate over the interval I, which gives∫

I

|q(x)f(x)|2 dx ≤ Cε

∫
I

|f ′(t)|2 dt+ C(1 + ε−1)

∫
I

|f(t)|2 dt.

Since R = ∪I, we find by summing

‖qf‖2 ≤ Cε ‖f ′‖2 + C(1 + ε−1) ‖f‖2.

In order to get the second (weak) derivative into play, we use the Fourier transform, see Section
6.3. In particular,

‖f ′‖2 =

∫
R
λ2|(Ff)(λ)|2 dλ ≤ 1

2

∫
R
λ4|(Ff)(λ)|2 dλ+

1

2

∫
R
|(Ff)(λ)|2 dλ

=
1

2

∫
R
|f ′′(t)|2 dt+

1

2

∫
R
|f(t)|2 dt
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using 2|λ|2 ≤ |λ|4 + 1. Plugging this back in gives

‖qf‖2 ≤ 1

2
Cε ‖f ′′‖2 + C(1 +

1

2
ε+ ε−1) ‖f‖2,

which is the required estimate after renaming the constants.

(4) ⇒ (5): Use

‖qf‖2 ≤ ε ‖f ′′‖2 +K ‖f‖2 ≤ ε ‖f ′′‖2 + 2
√
εK ‖f ′′‖‖f‖+K ‖f‖2

=
(√

ε‖f ′′‖+
√
K ‖f‖

)2
,

which gives the result after taking square roots and renaming the constants.

(5) ⇒ (1): For f ∈ W 2(R) the assumption implies qf ∈ L2(R), or f ∈ D(Q).

It remains to prove Lemma 2.2.7, which is the following exercise.

Exercise 2.2.8. 1. Show that, by reducing to real and imaginary parts, we can restrict to
the case that f is a real-valued function in C1(R).

2. Using
d(f 2)

dx
(x) = 2f(x)f ′(x), and 2ab ≤ εa2 + ε−1b2, show that

f(x)2 − f(s)2 ≤ ε

∫
I

|f ′(t)|2 dt+
1

ε

∫
I

|f(t)|2 dt

for x, s ∈ I.

3. Show that for a suitable choice of s ∈ I Lemma 2.2.7 follows.

Exercise 2.2.9. Consider the differential operator

− d2

dx2
− 2

p′

p

d

dx
+ q − p′′

p

for some strictly positive p ∈ C2(R). Show that this differential operator for real-valued q
is symmetric for a suitable choice of domain on the Hilbert space L2(R, p(x)2 dx). Establish
that this operator is unitarily equivalent to the Schrödinger operator − d2

dx2 + q on L2(R).

We have gone through some trouble to establish a suitable criterion in Corollary 2.2.6 such
that the Schrödinger operator is a self-adjoint operator. It may happen that the potential is
such that the corresponding Schrödinger operator defined on W 2(R)∩D(Q) is not self-adjoint
but a symmetric densely defined operator, and then one has to look for self-adjoint extensions.
It can also happen that the potential is so ‘bad’, that W 2(R)∩D(Q) is not dense. We do not
go into this subject.
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2.3 The essential spectrum of Schrödinger operators

The notion of essential spectrum is recalled in Sextion 6.5. From Theorem 6.5.5 and Theorem
2.1.3 it follows that the essential spectrum of − d2

dx2 is equal to its spectrum [0,∞). In this
section we give a condition on the potential q that ensures that the essential spectrum of
− d2

dx2 + q is [0,∞) as well. In this section we assume that − d2

dx2 + q is a self-adjoint operator
with domain the Sobolev space W 2(R), which is the case if Theorem 2.2.5(3) holds.

We start with the general notion of T -compact operator, and next discuss the influence of
a perturbation of T by a T -compact operator S on the essential spectrum.

Definition 2.3.1. Let (T,D(T )) be a closed operator on a Hilbert space H. The operator
(S,D(S)) on the Hilbert space is compact relative to T , or T -compact, if D(T ) ⊂ D(S) and
for any sequence {xn}∞n=1 satisfying ‖xn‖+‖Txn‖ ≤ C the sequence {Sxn}∞n=1 has a convergent
subsequence.

Note that Definition 2.3.1 can be rephrased equivalently as S : (D(T ), ‖ · ‖T ) → H being
compact, where (D(T ), ‖ · ‖T ) is the Hilbert space equipped with the graph norm.

Theorem 2.3.2. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H, and (S,D(S))
a closed symmetric T -compact operator. Then (T + S,D(T )) is a self-adjoint operator, and
σess(T ) = σess(S + T ).

Proof. By Definition 2.3.1, D(T ) ⊂ D(S), so if we can check the condition in Rellich’s Per-
turbation Theorem 2.2.4 we may conclude that (T + S,D(T )) is self-adjoint. We claim that
for all ε > 0 there exists K > 0 such that

‖Sx‖ ≤ ε ‖Tx‖+K ‖x‖, ∀x ∈ D(T ). (2.3.1)

Then the first statement follows from Rellich’s Theorem 2.2.4 by taking ε < 1.
To prove this claim we first prove a weaker claim, namely that there exists a constanst C

such that
‖Sx‖ ≤ C

(
‖Tx‖+ ‖x‖), ∀x ∈ D(T ).

Indeed, if this estimate would not hold, we can find a sequence {xn}∞n=1 such that ‖Txn‖ +
‖xn‖ = 1 and ‖Sxn‖ → ∞. But by T -compactness, {Sxn}∞n=1 has a convergent subsequence,
say Sxnk

→ y, so in particular ‖Sxnk
‖ → ‖y‖ contradicting ‖Sxn‖ → ∞.

Now to prove the more refined claim (2.3.1) we argue by contradiction. So assume ∃ε > 0
such that we cannot find a K such that (2.3.1) holds. So we can find a sequence {xn}∞n=1

in D(T ) such that ‖Sxn‖ > ε‖Txn‖ + n‖xn‖. By changing xn to xn/(‖xn‖ + ‖Txn‖) we
can assume that this sequence satisfies ‖xn‖ + ‖Txn‖ = 1. By the weaker estimate we have
‖Sxn‖ ≤ C

(
‖Txn‖ + ‖xn‖

)
≤ C and C ≥ ‖Sxn‖ ≥ ε‖Txn‖ + n‖xn‖, so that ‖xn‖ →

0 and hence ‖Txn‖ → 1 as n → ∞. By T -compactness, the sequence {Sxn}∞n=1 has a
convergent subsequence, which we also denote by {Sxn}∞n=1, say Sxn → y. Since we assume
(S,D(S)) closed, we see that xn → 0 ∈ D(S) and y = S0 = 0. On the other hand ‖y‖ =
limn→∞ ‖Sxn‖ ≥ ε limn→∞ ‖Txn‖ = ε > 0. This gives the required contradiction.
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In order to prove the equality of the essential spectrum, take λ ∈ σess(T ), so we can take
a sequence {xn}∞n=1 as in Theorem 6.5.4(3). Recall that this means that the sequence satisfies
‖xn‖ = 1, 〈xn, y〉 → 0 for all y ∈ H and ‖(T − λ)xn‖ → 0.

In particular, ‖xn‖ + ‖Txn‖ is bounded, and by T -compactness it follows that {Sxn}∞n=1

has a convergent subsequence, say Sxnk
→ y. For arbitrary z ∈ D(T ) ⊂ D(S) we have

〈y, z〉 = lim
k→∞

〈Sxnk
, z〉 = lim

k→∞
〈xnk

, Sz〉 = 0,

since S is symmetric and using that xn → 0 weakly. By density of D(T ), we have y = 0,
or (S + T − λ)xnk

→ 0, and by Theorem 6.5.4(3) it follows that λ ∈ σess(S + T ). Or
σess(T ) ⊂ σess(S + T ).

Conversely, we can use the above reasoning if we can show that −S is (T + S)-compact,
since then σess(S+T ) ⊂ σess(−S+T +S) = σess(T ). (Note that we already have shown that
(T + S,D(T )) is self-adjoint, and of course −S is a closed symmetric operator.) It suffices to
prove that S is (T + S)-compact, since then −S is also (T + S)-compact. We first observe
that S is T -compact implies the existence of a constant C0 > 0 such that

‖x‖+ ‖Tx‖ ≤ C0

(
‖x‖+ ‖(S + T )x‖

)
. (2.3.2)

Indeed, arguing by contradiction, if this is not true there exists a sequence {xn}∞n=1 such
that ‖xn‖ + ‖Txn‖ = 1 and ‖xn‖ + ‖(S + T )xn‖ → 0, and by T -compactness of S we have
that there exists a convergent subsequence {Sxnk

}∞k=1 of {Sxn}∞n=1 converging to x. Then
necessarily Txnk

→ −x and xnk
→ 0, and since T is self-adjoint, hence closed, we have x = 0.

This contradicts the assumption ‖x‖+ ‖Tx‖ = 1.
Now to prove that S is (T +S)-compact, take a sequence {xn}∞n=1 satisfying ‖xn‖+ ‖(T +

S)xn‖ ≤ C, then by (2.3.2) we have ‖xn‖+ ‖Txn‖ ≤ CC0, so by T -compactness the sequence
{Sxn}∞n=1 has a convergent subsequence. Or S is (T + S)-compact.

Exercise 2.3.3. The purpose of this exercise is to combine Rellich’s Perturbation Theorem
2.2.4 with Theorem 2.3.2 in order to derive the following statement: Let (T,D(T )) be a
self-adjoint operator, and S1, S2 symmetric operators such that (i) D(T ) ⊂ D(S1), (ii) S2 is
a closed T -compact operator, (iii) ∃a < 1, b ≥ 0 such that ‖S1x‖ ≤ a‖Tx‖ + b‖x‖ for all
x ∈ D(T ). Then S2 is (T + S1)-compact and σess(T + S1 + S2) = σess(T + S1).

Prove this result using the following steps.

• Show ‖Tx‖ ≤ ‖(T+S1)x‖+a‖Tx‖+b‖x‖ and conclude (1−a)‖Tx‖ ≤ ‖(T+S1)x‖+b‖x‖.

• Show that S2 is (T + S1)-compact.

• Conclude, using Theorem 2.3.2, that σess(T + S1 + S2) = σess(T + S1).

We want to apply Theorem 2.3.2 to the Schrödinger operator − d2

dx2 + q. Recall that we
call a function q locally square integrable if

∫
B
|q(x)|2 dx < ∞ for each bounded measurable

subset B of R. Note that in particular any square integrable function, which we consider as
an element of L2(R), is locally square integrable. The function q(x) = 1 is an example of a
locally square integrable function that is not square integrable.
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Theorem 2.3.4. The operator (Q,D(Q)) is − d2

dx2 -compact if and only if q is a locally square
integrable function satisfying

lim
|y|→∞

∫ y+1

y

|q(x)|2 dx→ 0.

Corollary 2.3.5. If q ∈ L2(R), then the essential spectrum of − d2

dx2 + q is [0,∞).

Proof of Theorem 2.3.4. First assume that the condition on the potential q is not valid,
then there exists a ε > 0 and a sequence of points {yn}∞n=1 such that |yn| → ∞ and∫ yn+1

yn
|q(x)|2 dx ≥ ε. Pick a function φ ∈ C∞

c (R) with the properties φ(x) ≥ 1 for x ∈ [0, 1]

and supp(φ) ⊂ [−1, 2]. Define the translated function φn(x) = φ(x − yn), then obviously
φn ∈ W 2(R) and ‖φ′′n‖ + ‖φn‖ = ‖φ′′‖ + ‖φ‖ is independent of n. Consequently, the as-
sumption that Q is − d2

dx2 -compact implies that {Qφn}∞n=1 has a convergent subsequence, again
denoted by {Qφn}∞n=1, say Qφn → f . Observe that∫

R
|q(x)φn(x)|2 dx ≥

∫ yn+1

yn

|q(x)|2 dx ≥ ε,

so that ‖f‖ ≥
√
ε > 0. On the other hand, for any fixed bounded interval I of length 1 we

have φn|I = 0 for n sufficiently large since |yn| → ∞, so that

(∫
I

|f(x)|2 dx
) 1

2

≤
(∫

I

|f(x)− q(x)φn(x)|2 dx
) 1

2

+

(∫
I

|q(x)φn(x)|2 dx
) 1

2

=

(∫
I

|f(x)− q(x)φn(x)|2 dx
) 1

2

→ 0, n→∞.

This shows
∫
I
|f(x)|2 dx = 0, hence, by filling R with such intervals, ‖f‖ = 0, which is

contradicting ‖f‖ ≥
√
ε > 0.

Now assume that the assumption on q is valid. We start with some general remarks on
W 2(R). For f ∈ W 2(R) ⊂ C1(R) (using the Sobolev inbedding theorem) we have, using the
Fourier transform and the Cauchy-Schwarz inequality (6.1.1),

f(x) =
1√
2π

∫
R
eiλx(Ff)(λ) dλ

⇒|f(x)| ≤ 1√
2π
‖λ 7→ 1√

1 + λ2
‖ ‖λ 7→

√
1 + λ2(Ff)(λ)‖ =

1

2

√
2‖λ 7→

√
1 + λ2(Ff)(λ)‖

and similarly

|f ′(x)| ≤ 1

2

√
2‖λ 7→

√
1 + λ2λ(Ff)(λ)‖.
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Now, reasoning as in the proof of (3) ⇒ (4) for Theorem 2.2.5 we see

‖λ 7→
√

1 + λ2(Ff)(λ)‖2 ≤
∫

R
|(Ff)(λ)|2 dλ+

∫
R

λ2|(Ff)(λ)|2 dλ

≤ 3

2

∫
R
|(Ff)(λ)|2 dλ+

1

2

∫
R

λ4|(Ff)(λ)|2 dλ =
3

2
‖f‖2 +

1

2
‖f ′′‖2,

‖λ 7→
√

1 + λ2λ2(Ff)(λ)‖2 ≤ 1

2
‖f‖2 +

3

2
‖f ′′‖2,

so, with C =
√

3,
|f(x)|+ |f ′(x)| ≤ C (‖f ′′‖+ ‖f‖) .

(So we have actually proved that the Sobolev inbedding W 2(R) ⊂ C1(R) is continuous.)
If {fn}∞n=1 is now a sequence in W 2(R) such that ‖f ′′n‖ + ‖fn‖ ≤ C1, then it follows

that f and f ′ are uniformly bounded, this in particular implies that M = {fn | n ∈ N} is
uniformly continuous. Since M is also bounded in the supremum norm, it follows by the
Arzelà-Ascoli theorem that the closure of M is compact in C(R). In particular, there is a
convergent subsequence, which is also denoted by {fn}∞n=1. This result, with the locally square
integrability condition on q, now gives for each fixed N > 0∫ N

−N
|q(x)

(
fn(x)− fm(x)

)
|2 dx ≤ ‖fn − fm‖∞

∫ N

−N
|q(x)|2 dx→ 0, (2.3.3)

so this can be made arbitrarily small for n,m large enough.
It remains to show that restricting the potential to the interval [−N,N ] does not affect

{qfn}∞n=1 being a Cauchy sequence. Take ε > 0 arbitrary, and choose a corresponding N such

that
∫ y+1

y
|q(x)|2 dx < ε for all |y| > N . Denote by qN the function equal to q for |x| ≤ N and

qN(x) = 0 for |x| > N . In (2.3.3) we have dealt with qN(fn − fm), the remaining part follows
from the following claim. There exists constants C1, C2 independent of N such that

‖(q − qN)f‖2 ≤ ε
(
C1 ‖f ′′‖2 + C2 ‖f‖

)
, ∀ f ∈ W 2(R).

The claims follows from the reasoning after Lemma 2.2.7 by replacing q and C by q − qN
and ε (taking e.g. the ε in the proof of Theorem 2.2.5 equal to 1, so we can take C1 = 1

2
,

C2 = 2
5
).

Exercise 2.3.6. Consider the Schrödinger operator with a potential of the form q1 + q2, with
q1(x) = a, q2(x) = bχI(x), where χI is the indicator function of the set I (i.e. χI(x) = 1 if
x ∈ I and χI(x) = 0 if x /∈ I) for I the interval I = [c, d]. Use Exercise 2.3.3 to describe the
essential spectrum, see also Section 2.5.1.

2.4 Bound states and discrete spectrum

We consider the Schrödinger operator− d2

dx2 +q for which we assume that the essential spectrum
is [0,∞). So this is the case if q satisfies the condition in Theorem 2.3.4, which we now assume



16 Chapter 2: Schrödinger operators and their spectrum

throughout this section. This in particular means that any λ < 0 in the spectrum is isolated
and contained in the point spectrum by Theorem 6.5.5. In this case there is an eigenfunction
f ∈ W 2(R) such that

−f ′′(x) + q(x) f(x) = λ f(x), λ < 0.

We count eigenvalues according to their multiplicity, i.e. the dimension of Ker(− d2

dx2 +q−λ). In
quantum mechanical applications an eigenfunction for the Schrödinger operator corresponding
to an eigenvalue λ < 0 is called a bound state.

For a Schrödinger operator with essential spectrum [0,∞) the dimension of the space of
bound states might be zero, finite or infinite. Note that the number of negative eigenvalues
is denumerable by Theorem 6.5.5. We give a simple criterion that guarantees that there is at
least a one-dimensional space of bound states. There are many more explicit criterions on the
potential that imply explicit results for the dimension of the space of bound states.

We start with a general statement.

Proposition 2.4.1. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H such that
σess(T ) ⊂ [0,∞). Then T has negative eigenvalues if and only if there exists a non-trivial
subspace M ⊂ D(T ) ⊂ H such 〈Tx, x〉 < 0 for all x ∈M\{0}.

Proof. If T has negative eigenvalues, then put M =
⊕

Ker(T − λ), summing over all 0 > λ ∈
σ(T ) and where we take only finite linear combinations.

If T has no negative eigenvalues, then it follows by Theorem 6.5.5 that σ(T ) = σess(T ) ⊂
[0,∞). By the Spectral Theorem 6.4.1, it follows that

〈Tx, x〉 =

∫
σ(T )

λ dEx,x(λ), ∀x ∈ D(T ),

and since Ex,x, x 6= 0, is a positive measure and σ(T ) ⊂ [0,∞) the right hand side is obviously
non-negative. So M is trivial.

This principle can be used to establish a criterion for the occurrence of bound states.

Theorem 2.4.2. Assume there exists α ∈ R such that

inf
α>0

1

α

∫
R
q(x) exp(−2α2(x− a)2) dx < −

√
π

2
,

then the Schrödinger operator − d2

dx2 + q has a negative eigenvalue.

Proof. Take any function f ∈ W 2(R) ⊂ D(Q), then 〈−f ′′, f〉 = 〈f ′, f ′〉 = ‖f ′‖2. Hence,
〈−f ′′ + qf, f〉 = ‖f ′‖2 +

∫
R q(x)|f(x)|2 dx and if this expression is (strictly) negative, Propo-

sition 2.4.1 implies the result.
In order to obtain the result, we take f(x) = exp(−α2(x − a)2), then f ′(x) = −2α2(x −

a) exp(−α2(x− a)2), and

‖f ′‖2 = 4α4

∫
R
(x− a)2e−2α2(x−a)2 dx =

4α4

2α3
√

2

∫
R
y2e−y

2

dy =
2α√

2

1

2

√
π = α

√
π

2
,



Chapter 2: Schrödinger operators and their spectrum 17

so for this f we find

‖f ′‖2 +

∫
R
q(x)|f(x)|2 dx = α

(√
π

2
+

1

α

∫
R
q(x)e−2α2(x−a)2 dx

)
which is negative by assumption for suitable α.

By applying this idea to other suitable functions, one can obtain other criteria for the
existence of negative eigenvalues for Schrödinger operators.

Corollary 2.4.3. Assume the existence of a (measurable) set B ⊂ R such that
∫
B
q(x) dx < 0

and q(x) ≤ 0 for x /∈ B. Then the Schrödinger operator − d2

dx2 + q has at least one negative
eigenvalue.

The implicit assumption in Corollary 2.4.3 is that q integrable is over the set B. Note
that the standing assumption in this section is the assumption of Theorem 2.3.4. If B is

a bounded set, then the Hölder inequality implies
∫
B
|q(x)| dx ≤

√
|B|
(∫

B
|q(x)|2 dx

)1/2
, so

that the locally square integrability already implies this assumption. Here |B| denotes the
(Lebesgue) measure of the set B.

Proof. Note ∫
R
q(x)e−2α2x2

dx ≤
∫
B

q(x)e−2α2x2

dx→
∫
B

q(x) dx < 0, α ↓ 0,

so that 1
α

∫
R q(x)e

−2α2x2
dx can be made arbitrarily negative, hence we can apply Theorem

2.4.2. Note that interchanging limit and integration is justifiable by the Dominated Conver-
gence Theorem 6.1.3.

In particular, the special case B = R of Corollary 2.4.3 gives the following result.

Corollary 2.4.4. For q ∈ L1(R) such that
∫

R q(x) dx < 0 the Schrödinger operator − d2

dx2 + q
has at least one negative eigenvalue.

We also give without proof an estimate on the number of negative eigenvalues for the
Schrödinger operator.

Theorem 2.4.5. Assume that q satisfies the condition in Theorem 2.3.4 and additionally that∫
R |x| |q(x)| dx <∞, then the number N of eigenvalues of the Schrödinger operator is bounded

by

N ≤ 2 +

∫
R
|x| |q(x)| dx.

The argument used in the proof of Theorem 2.4.5 is an extension of a comparison argument
for a Schrödinger operator on a finite interval.
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2.5 Explicit examples of potentials

2.5.1 Indicator functions as potential

Consider first the potential q(x) = a ∈ R, then using Exercise 2.3.3 or writing q = aI, I
identity operator in B(L2(R)), we see that the corresponding Schrödinger operator L has
σ = σess = [a,∞). A somewhat more general statement is contained in the following exercise.

Exercise 2.5.1. Show that if the potential q satisfies q(x) ≥ a almost everywhere, then
(−∞, a) is contained in the resolvent ρ(L). Rephrased, the spectrum σ(L) is contained in
[a,∞). Prove this using the following steps.

• Show that 〈(L − λ)f, f〉 = 〈−f ′′ + qf − λf, f〉 = ‖f ′‖2 +
∫

R(q(x) − λ)|f(x)|2 dx, ∀f ∈
W 2(R).

• Conclude that for λ < a, (a − λ)‖f‖ ≤ ‖(L − λ)f‖ for all f ∈ W 2(R). Use Theorem
6.5.1 to conlude that λ ∈ ρ(L).

Exercise 2.5.2. Assume that the potential q ∈ L2(R) satisfies q(x) ≥ a for a < 0. Show
that [a, 0] contains only finitely many points of the spectrum of the corresponding Schrödinger
operator. (Hint: Use Theorem 6.5.5 and Exercise 2.5.1.)

Now consider q(x) = a + bχI(x), b ∈ R, where we take for convenience I = [0, 1], and
denote the corresponding Schrödinger operator again by L. By Exercise 2.3.3 we know that
σess(L) = [a,∞). In case b > 0, we have σess(L) = [a,∞) by combining Exercise 2.3.3 and
Theorem 2.3.4. Then Exercise 2.5.1 implies σ(L) = [a,∞).

We now consider the case a = 0, b < 0. By Corollary 2.4.3 or Corollary 2.4.4, there is
negative point spectrum. On the other hand, the essential spectrum is [0,∞) and by Exercise
2.5.1 the spectrum is contained in [b,∞). We look for negative spectrum, which, by Theorem
6.5.5, is contained in the point spectrum and consists of isolated points. We put λ = −γ2,√
|b| > γ > 0 and we try to find solutions to Lf = λf , or

f ′′ − γ2f = 0, x < 0,

f ′′ − (γ2 + b)f = 0, 0 < x < 1,

f ′′ − γ2f = 0, x > 1.

The first and last equation imply f(x) = A− exp(γx) + B− exp(−γx), x < 0, and f(x) =
A+ exp(γx) + B+ exp(−γx), x > 1, for constants A±, B± ∈ C. Since we need f ∈ L2(R),
we see that B− = 0 and A+ = 0, and because an eigenfunction (or bound state) can be
changed by multiplication by a constant, we take A− = 1, or f(x) = exp(γx), x < 0, and
f(x) = B+ exp(−γx), x > 1. Now b + γ2 < 0, and we put −ω2 = b + γ2, ω > 0. It is left as
an exercise to check that γ2 = −b, i.e ω = 0, does not lead to an eigenfunction. So the second
equation gives f(x) = A cos(ωx)+B sin(ωx), 0 < x < 1. Since an eigenfunction f ∈ W 2(R) ⊂
C1(R), we need to choose A,B,B+ such that f is C1 at 0 and at 1. At 0 we need 1 = A
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for continuity and γ = ωB for continuity of the derivative. So f(x) = cos(ωx) + γ
ω

sin(ωx),
0 < x < 1, and we need cos(ω) + γ

ω
sin(ω) = B+e

−γ for continuity at 1 –this then fixes B+–
and −ω sin(ω) + γ cos(ω) = −γB+e

−γ for a continuous derivative at 1. In order that this has
a solution we require

−ω sin(ω) + γ cos(ω) = −γ cos(ω)− γ2

ω
sin(ω) ⇒ tan(ω) =

2γω

ω2 − γ2

and this gives an implicit requirement on the eigenvalue λ = −γ2. Having a solution λ ∈
[b, 0], we see from the above calculation that the corresponding eigenspace is at most one-
dimensional, and that the corresponding eigenfunction or bound state is in C1(R). It remains
to check that this eigenfunction is actually an element of W 2(R) in order to be able to conclude
that the corresponding λ is indeed an eigenvalue.

Exercise 2.5.3. Show that the number N of negative eigenvalues, i.e. the number of solutions
to tan(ω) = 2γω

ω2−γ2 , is determined by the condition N − 1 <
√
−b
π

< N assuming b /∈ π2Z.
Show that the corresponding eigenfunction is indeed an element of the Sobolev space, so that
there are N eigenvalues. E.g. for b = −10, there are two bound states corresponding to
γ = 0.03244216751, γ = 2.547591633.

The assumption in Exercises 2.5.3 is inserted to avoid bound states for the eigenvalue 0.

Exercise 2.5.4. Using the techniques above, discuss the spectrum of the Schrödinger operator
with potential given by q(x) = a for x < x1, q(x) = b for x1 < x < x2, q(x) = c for x2 < x for
a, b, c ∈ R and x1 < x2.

2.5.2 cosh−2-potential

Recall the hyperbolic cosine function cosh(x) = 1
2
(ex + e−x), the hyperbolic sine function

sinh(x) = 1
2
(ex − e−x) and the relation cosh2(x) − sinh2(x) = 1. Obviously, d

dx
cosh(x) =

sinh(x), d
dx

sinh(x) = cosh(x).

We take the potential q(x) = a cosh−2(px), a, p ∈ R, see Figure 2.1 for the case a = −2,
p = 1. This potential is an important special case for the theory in Chapter 5 and it is related to
soliton solutions of the Korteweg-de Vries equation. Since q ∈ L2(R), it follows from Corollary
2.2.6 and Corollary 2.3.5 that the corresponding Schrödinger operator L =− d2

dx2 + q is self-
adjoint and σess(L) = [0,∞). Since for a > 0 we have 〈Lf, f〉 = ‖f ′‖ +

∫
R q(x)|f(x)|2 dx ≥ 0

for all f ∈ W 2(R) it follows that σ(L) = [0,∞) as well. Since cosh−2 ∈ L1(R), we can use
Corollary 2.4.4 to see that for a < 0 there is at least one negative eigenvalue.

We consider a first example in the following exercise.
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Figure 2.1: The potential −2/ cosh2(x).

Exercise 2.5.5. Show that f(x) = (cosh(px))−1 satisfies

−f ′′(x)− 2p2

cosh2(px)
f(x) = −p2 f(x),

or −p2 ∈ σp(L) for the case a = −2p2.

In Exercise 2.5.8 you have to show that in this case σ = {−p2}∪[0,∞) and that Ker(L+p2)
is one-dimensional.

Exercise 2.5.6. Consider a general potential q ∈ L2(R) and the corresponding Schrödinger
operator L1. Set fp(x) = f(px) for p 6= 0, and let Lp denote the Schrödinger operator with
potential qp. Show that λ ∈ σ(L1) ⇐⇒ p2λ ∈ σ(Lp) and similarly for the point spectrum and
the essential spectrum.

Because of Exercise 2.5.6 we can restrict ourselves to the case p = 1. We transform the
Schrödinger eigenvalue equation into the hypergeometric differential equation;

z(1− z) yzz +
(
c− (1 + a+ b)z

)
yz − ab y = 0 (2.5.1)

for complex parameters a, b, c. In Exercise 2.5.7 we describe solutions to (2.5.1). This exercise
is not essential, and is best understood within the context of differential equations on C with
regular singular points.
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Put λ = γ2 with γ real or purely imaginary, and consider −f ′′(x) + a cosh−2(x)f(x) =
γ2f(x). We put z = 1

2
(1−tanh(x)) = (1+exp(2x))−1, where tanh(x) = sinh(x)/ cosh(x). Note

that −∞ is mapped to 1 and ∞ is mapped to 0, and x 7→ z is invertible with dz
dx

= −1
2 cosh2(x)

.

So we have to deal with (2.5.1) on the interval (0, 1).
Before transforming the differential equation, note that tanh(x) = 1− 2z and cosh−2(x) =

4z(1− z). Now we put f(x) = (cosh(x))iγ y(z), then we have

f ′(x) = iγ(cosh(x))iγ−1 sinh(x) y(z)− 1

2
(cosh(x))iγ−2 yz(z),

f ′′(x) = iγ(iγ − 1)(cosh(x))iγ−2 sinh2(x) y(z) + iγ(cosh(x))iγ y(z)

− i

2
γ(cosh(x))iγ−3 sinh(x) yz(z)−

1

2
(iγ − 2)(cosh(x))iγ−3 sinh(x) yz(z)

+
1

4
(cosh(x))iγ−4 yzz(z)

Plugging this into −f ′′(x)+a cosh−2(x)f(x) = γ2f(x) and multiplying by (cosh(x))2−iγ gives,

−z(1− z) yzz(z) + (1− 2z)(iγ − 1) yz(z) + (a− γ2 − iγ) y(z) = 0.

This equation is of the hypergeometric differential type (2.5.1) if we set (a, b, c) in (2.5.1) equal

to (1
2
− iγ +

√
1
4
− a, 1

2
− iγ −

√
1
4
− a, 1− iγ).

Note that under this transformation the eigenvalue equation −f ′′(x) + a cosh−2(x)f(x) =
γ2f(x) is not transferred into another eigenvalue equation for the hypergeometric differential
equation, since γ also occurs in the coefficient of yz.

Exercise 2.5.7. 1. Define the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
, a ∈ C

so that (1)n = n! and (a)0 = 1. Define the hypergeometric function

2F1

(
a, b

c
; z

)
=

∞∑
n=0

(a)n(b)n
(c)n n!

zn.

Show that the radius of convergence is 1 and that it gives an analytic solution to
(2.5.1). Check that this is a well-defined function for c /∈ {· · · ,−3,−2,−1, 0}, and
that 1

Γ(c) 2F1

(
a, b
c

; z
)

is well-defined for c ∈ C.

2. Show that

z1−c
2F1

(
a− c+ 1, b− c+ 1

2− c
; z

)
is also a solution to (2.5.1). (We define z1−c = exp

(
(1 − c)

(
ln |z| + i arg(z)

))
with

| arg(z)| < π, so that the complex plane is cut along the negative real axis.) Show that
for c 6∈ Z we have obtained two linearly independent solutions to (2.5.1).



22 Chapter 2: Schrödinger operators and their spectrum

3. Rewrite (2.5.1) by switching to w = 1−z, and observe that this is again a hypergeometric
differential equation. Use this to observe that

2F1

(
a, b

a+ b+ 1− c
; 1− z

)
, (1− z)c−a−b 2F1

(
c− a, c− b

c+ 1− a− b
; 1− z

)
are also solutions to (2.5.1). These are linearly independent solutions in case c−a−b /∈ Z.

4. Use Exercise 2.5.5 to obtain an expression for cosh−1(x) in terms of a hypergeometric
function.

Since we are interested in negative eigenvalues we assume that a < 0 and λ = γ2 < 0; we
put γ = iβ with β > 0. Then the eigenfunction f satisfies

|f(x)|2 =
1

cosh2β(x)
|y( 1

1 + e2x
)|2,

so that square integrability for x→∞ gives a condition on y at 0. We call a function f square
integrable at ∞ if

∫∞
a
|f(x)|2 dx < ∞ for some a ∈ R. Note that any f ∈ L2(R) is square

integrable at ∞. Square integrability at −∞ is defined analogously. Note that 2F1

(
a, b
c

; z
)

equals 1 at z = 0, so is bounded and the corresponding eigenfunction is then square integrable
at ∞. For the other solution we get

|f(x)|2 =
1

cosh2β(x)
|(1 + e2x)|2β

∣∣∣∣ 2F1

(
a− c+ 1, b− c+ 1

2− c
;

1

1 + e2x

)∣∣∣∣2
(with a, b, c of the hypergeometric function related to a, γ = iβ as above) and this is not
square integrable for x → ∞. So we conclude that the eigenfunction for the eigenvalue −β2

that is square integrable for x→∞ is a multiple of

f+(x) =
1

coshβ(x)
2F1

(
1
2

+ β + (1
4
− a)1/2, 1

2
+ β − (1

4
− a)1/2

1 + β
;

1

1 + e2x

)
. (2.5.2)

This already implies that the possible eigenspace is at most one-dimensional, since there is a
one-dimensional space of eigenfunctions that is square integrable at ∞.

Similarly, using the solutions of Exercise 2.5.7(3) we can look at eigenfunctions that are
square integrable for x→ −∞, and we see that these are a multiple of

f−(x) =
1

coshβ(x)
2F1

(
1
2

+ β + (1
4
− a)1/2, 1

2
+ β − (1

4
− a)1/2

1 + β
;

e2x

1 + e2x

)
. (2.5.3)

So we actually find an eigenfunction in case f+ is a multiple of f−. Since the four hypergeo-
metric functions in Exercise 2.5.7 are solutions to the same second order differential equation,
there are linear relations between them. We need,

2F1

(
a, b

a+ b− c+ 1
; 1− z

)
= A 2F1

(
a, b

c
; z

)
+B z1−c

2F1

(
a− c+ 1, b− c+ 1

2− c
; z

)
,

A =
Γ(a+ b+ 1− c)Γ(1− c)

Γ(a− c+ 1)Γ(b− c+ 1)
, B =

Γ(a+ b+ 1− c)Γ(c− 1)

Γ(a)Γ(b)
.

(2.5.4)



Chapter 2: Schrödinger operators and their spectrum 23

So we find that f− is a multiple of f+ in case the B in (2.5.4) vanishes, or

Γ(1 + β)Γ(β)

Γ(1
2

+ β + (1
4
− a)1/2)Γ(1

2
+ β − (1

4
− a)1/2)

= 0.

This can only happen if the Γ-functions in the denominator have poles. Since the Γ-functions
have poles at the {· · · ,−2,−1, 0} and β > 0 and a < 0 we see that this can only happen if
1
2

+ β −
√

1
4
− a = −n ≤ 0 for n a non-negative integer, or β =

√
1
4
− a− 1

2
− n.

It remains to check that in this case the eigenfunctions are indeed elements of the Sobolev
space W 2(R). We leave this to the reader.

Exercise 2.5.8. Show that the number of (strictly) negative eigenvalues of the Schrödinger
operator for the potential a/ cosh2(x) is given by the integer N satisfying N(N − 1) < −a <
N(N + 1). Show that for the special case −a = m(m + 1), m ∈ N, one of the points β
corresponds to zero, and in this case N = m. Conclude that the spectrum of the Schrödinger
operator in Exercise 2.5.5 has spectrum {−p2} ∪ [0,∞) and that there is a one-dimensional
space of eigenfunctions, or bound states, for the eigenvalue −p2.

2.5.3 Exponential potential

We consider the potential q(x) = a exp(−2|x|), then it is clear from Corollary 2.2.6 and
Corollary 2.3.5 that the Schrödinger operator is self-adjoint and that its essential spectrum is
[0,∞), and for a > 0 we see from Exercise 2.5.1 that its spectrum is [0,∞) as well. See Figure
2.2 for the case a = −2, and compare with Figure 2.1.

The eigenvalue equation f ′′(x)+(λ−a exp(−2|x|))f(x) = 0 can be transformed into a well-
known differential equation. For the transformation we consider the intervals (−∞, 0) and
(0,∞) separately. For x < 0 we put z =

√
−a exp(x), and for x > 0 we put z =

√
−a exp(−x)

and put y(z) = f(x), then the eigenvalue equation is transformed into the Bessel differential
equation

z2 yzz + z yz + (z2 − ν2) y = 0,

where we have put λ = −ν2. Note that (−∞, 0) is transformed into (0,
√
−a) and (0,∞) into

(
√
−a, 0), and so we need to glue solutions together at x = 0 or z =

√
−a in a C1-fashion.

Exercise 2.5.9. 1. Check the details of the above transformation.

2. Define the Bessel function

Jν(z) =
(z/2)ν

Γ(ν + 1)

∞∑
n=0

(−1)n

(ν + 1)n

z2n

4n n!
=

∞∑
n=0

(−1)n

n! Γ(ν + n+ 1)

(z
2

)ν+2n
.

Show that the power series in the middle defines an entire function. Show that Jν(z) is
a solution to Bessel differential equation. Conclude that J−ν is also a solution.
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Figure 2.2: The potential −2 exp(−2|x|).

3. Show that for ν /∈ Z the Bessel functions Jν and J−ν are linearly independent solutions
to the Bessel functions. (Hint: show that for any pair of solutions y1, y2 of the Bessel
differential equation the Wronskian W (z) = y1(z)y

′
2(z)−y′1(z)y2(z) satisfies a first order

differential equation that leads to W (z) = C/z. Show that for y1(z) = Jν(z), y2(z) =
J−ν(z) the constant C = −2 sin(νπ)/π.)

The reduction to the Bessel differential equation works for arbitrary a, but we now stick
to the case a < 0. In case a < 0 we want to discuss the discrete spectrum. We consider
eigenfunctions f for eigenvalue λ = −ν2 < 0, so we have ν ∈ R and we assume ν > 0.
We now put c =

√
−a. For negative x it follows |f(x)|2 = |y(cex)|2, and since Jν(z) =

(z/2)ν

Γ(ν+1)

(
1 + O(z)

)
as z → 0 for ν /∈ −N, it follows that f is a multiple of Jν(ce

x) for x < 0
in order to be square integrable at ∞. In order to extend f to a function for x > 0, we put
f(x) = AJν(ce

−x) +B J−ν(ce
−x), so that it is a solution to the eigenvalue equation for x > 0.

Since f has to be in W 2(R) ⊂ C1(R) we need to impose a C1-transition at x = 0, this gives{
AJν(c) +B J−ν(c) = Jν(c),

−cAJ ′ν(c)− cB J ′−ν(c) = cJ ′ν(c)
=⇒

(
Jν(c) J−ν(c)
J ′ν(c) J ′−ν(c)

)(
A
B

)
=

(
Jν(c)
−J ′ν(c)

)
=⇒

(
A
B

)
= − π

2 sin(νπ)

(
J ′−ν(c) −J−ν(c)
−J ′ν(c) Jν(c)

)(
Jν(c)
−J ′ν(c)

)
,
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since the determinant of the matrix is precisely the Wronskian of the Bessel functions Jν and
J−ν , see Exercise 2.5.9(3), and where we now assume ν /∈ Z.

Similarly, for x > 0 we have |f(x)|2 = |y(ce−x)|2 is square integrable at ∞ if only if y
equals Jν , so that f is a multiple of Jν(ce

−x) for x > 0 in order to be square integrable. So
we can only have a square integrable eigenfunction (or bound state) in case B in the previous
calculation vanishes, or Jν(c)J

′
ν(c) = 0. Given a, hence c, we have to solve this equation for ν

yielding the corresponding eigenvalues λ = −ν2 for the Schrödinger operator. This equation
cannot be solved easily in a direct fashion, and requires knowledge about Bessel functions,
its derivatives and its zeros. Since the negative spectrum has to be contained in [−c2, 0] we
conclude that the smallest positive zero of ν 7→ Jν(c) and ν 7→ J ′ν(c) is less than c. (This is a
classical result, due to Riemann.)
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Chapter 3

Scattering and wave operators

3.1 Time-dependent Schrödinger equation

Consider a self-adjoint Schrödinger operator L acting on L2(R). The time-dependent Schrö-
dinger equation is

iψ′(t) = Lψ(t), ψ : D ⊂ R → L2(R)

on some time domain D. The derivative with respect to time t is defined by

lim
h→0

‖1

h

(
ψ(t+ h)− ψ(t)

)
− ψ′(t)‖ = 0

whenever the limit exists. The solution of the time-dependent Schrödinger equation can be
solved completely using the Spectral Theorem 6.4.1 and the corresponding functional calculus.

Theorem 3.1.1. Assume L is a self-adjoint operator on L2(R), then the system

iψ′(t) = Lψ(t), ψ(0) = ψ0 ∈ D(L) (3.1.1)

has a unique solution ψ(t), t ∈ R, given by ψ(t) = exp(−itL)ψ0 which satisfies ‖ψ(t)‖ = ‖ψ0‖.

Proof. Let us first show existence. We use the Spectral Theorem 6.4.1 to establish the operator
U(t) = exp(−itL), which is a one-parameter group of unitary operators on the Hilbert space
L2(R). Define ψ(t) = U(t)ψ0. This is obviously defined for all t ∈ R and ψ(0) = U(0)ψ0 = ψ0,
since U(0) = 1 in B(H). Note that this can be defined for any ψ0, i.e. for this construction
the requirement ψ0 ∈ D(L) is not needed.

In order to show that the differential equation is fulfilled we consider

‖1

h

(
U(t+ h)ψ0 − U(t)ψ0

)
+ iLU(t)ψ0‖2

and to see that U(t)ψ0 ∈ D(L) we note that, by the Spectral Theorem 6.4.1, it suffices to
note that

∫
R λ

2dEU(t)ψ0,U(t)ψ0(λ) <∞ which follows from

〈E(A)U(t)ψ0, U(t)ψ0〉 = 〈U(t)E(A)ψ0, U(t)ψ0〉 = 〈E(A)ψ0, ψ0〉,

27
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since ψ0 ∈ D(L), U(t) commutes with L and U(t) is unitary by the Spectral Theorem 6.4.1.
Since all operators are functions of the self-adjoint operator, it follows that this equals

‖
(1

h

(
e−i(t+h)L − e−itL

)
+ iLe−itL

)
ψ0‖2 =

∫
R

∣∣1
h

(
e−i(t+h)λ − e−itλ

)
+ iλe−itλ

∣∣2 dEψ0,ψ0(λ)

=

∫
R

∣∣e−itλ(1

h

(
e−ihλ − 1

)
+ iλ

)∣∣2 dEψ0,ψ0(λ) =

∫
R

∣∣1
h

(
e−ihλ − 1

)
+ iλ|2 dEψ0,ψ0(λ).

Since 1
h

(
e−ihλ−1

)
+ iλ→ 0 as h→ 0, we only need to show that we can interchange the limit

with the integration. In order to do so we use | 1
h

(
e−iλh − 1

)
| ≤ |λ|, so that the integrand can

be estimated by 4|λ|2 independent of h. So we require
∫

R |λ|
2 dEψ0,ψ0(λ) <∞, or ψ0 ∈ D(L),

see the Spectral Theorem 6.4.1.
To show uniqueness, assume that ψ(t) and φ(t) are solutions to (3.1.1), then their difference

ϕ(t) = ψ(t)− φ(t) is a solution to iϕ′(t) = Lϕ(t), ϕ(0) = 0. Consider

d

dt
‖ϕ(t)‖2 =

d

dt
〈ϕ(t), ϕ(t)〉 = 〈ϕ′(t), ϕ(t)〉+ 〈ϕ(t), ϕ′(t)〉

= 〈−iLϕ(t), ϕ(t)〉+ 〈ϕ(t),−iLϕ(t)〉 = −i
(
〈Lϕ(t), ϕ(t)〉 − 〈ϕ(t), Lϕ(t)〉

)
= 0

since L is self-adjoint. So ‖ϕ(t)‖ is constant and ‖ϕ(0)‖ = 0, it follows that ϕ(t) = 0 for all t
and uniqueness follows.

It follows that the time-dependent Schrödinger equation is completely determined by the
self-adjoint Schrödinger operator L.

Exercise 3.1.2. We consider the setting of Theorem 3.1.1. Show that ψ(t) = e−iλtu, u ∈
L2(R), λ ∈ R fixed, is a solution to the time-dependent Schrödinger equation (3.1.1) if and
only if u ∈ D(L) is an eigenvector of L for the eigenvalue λ.

3.2 Scattering and wave operators

Let L0 be the unperturbed Schrödinger operator − d2

dx2 with its standard domain W 2(R) and

let L be the perturbed Schrödinger operator − d2

dx2 + q. We assume that L is self-adjoint, e.g.
if the potential q satisfies the conditions of Theorem 2.3.4. However, it should be noted that
the set-up in this section is much more general and works for any two operators L and L0

which are (possibly unbounded) self-adjoint operators on a Hilbert space H.

Definition 3.2.1. The solution ψ to (3.1.1) has an incoming asymptotic state ψ−(t) =
exp(−itL0)ψ

−(0) if
lim
t→−∞

‖ψ(t)− ψ−(t)‖ = 0.

The solution ψ to (3.1.1) has an outgoing asymptotic state ψ+(t) = exp(−itL0)ψ
+(0) if

lim
t→∞

‖ψ(t)− ψ+(t)‖ = 0.
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The solution ψ to (3.1.1) is a scattering state if it has an incoming asymptotic state and an
outgoing asymptotic state.

Define the operator W (t) = eitLe−itL0 , which is an element in B(L2(R)). Note that t 7→
eitL and t 7→ e−itL0 are one-parameter groups of unitary operators. In particular, they are
isometries, i.e. preserve norms. Also note that in general eitLe−itL0 6= eit(L−L0), unless L and
L0 commute. Assuming the solution ψ to (3.1.1) has an incoming state, then we have

lim
t→−∞

W (t)ψ−(0) = ψ(0).

To see that this is true, write

‖W (t)ψ−(0)− ψ(0)‖ = ‖eitLe−itL0ψ−(0)− ψ(0)‖ = ‖e−itL0ψ−(0)− e−itLψ(0)‖
= ‖ψ−(t)− ψ(t)‖ → 0, t→ −∞.

Similarly, if the solution ψ to (3.1.1) has an outgoing state, then we have

lim
t→∞

W (t)ψ+(0) = ψ(0).

Definition 3.2.2. The wave operators W± are defined as the strong limits of W (t) as t →
±∞. So its domain is

D(W±) = {f ∈ L2(R) | lim
t→±∞

W (t)f exists}

and W±f = limt→±∞W (t)f for f ∈ D(W±).

Exercise 3.2.3. In Definition 3.2.2 we take convergence in the strong operator topology. To
see that the operator norm is not suited, show that limt→∞W (t) = V exists in operator norm
if and only if L = L0, and in this case V is the identity. Show first that eitLV = V eitL0 for
all t ∈ R. (Hint: if V exists, observe that ‖ei(s+t)Le−i(s+t)L0 − eisLV e−isL0‖ = ‖eitLe−itL0 −
V ‖ → 0 as t → ∞, and hence, by uniqueness of the limit, V = eisLV e−isL0 . Conclude that
‖eitLe−itL0 − V ‖ = ‖1− V ‖.)

Since W (t) is a composition of unitaries, it is in particular an isometry. So ‖W (t)f‖ = ‖f‖,
so that the wave operators W± are partial isometries. The wave operators relate the initial
values of the incoming, respectively outgoing, asympotic states for the unperturbed problem
to the initial value for the perturbed problem. So D(W−), respectively D(W+), consists
of initial values for the unperturbed time-dependent Schrödinger equation that occur as in-
coming, respectively outgoing, asymptotic states for solutions to (3.1.1). Its range Ran(W−),
respectively Ran(W+), consists of initial values for the perturbed time-dependent Schrödinger
equation (3.1.1) that have an incoming, respectively outgoing, asymptotic state.

Note that for a scattering state ψ, the wave operators completely determine the incoming
and outgoing asymptotic states. Indeed, assumeW±ψ±(0) = ψ(0), then we can define ψ±(t) =
exp(−itL0)ψ

±(0) and ψ(t) = exp(−itL)ψ(0). It then follows that

lim
t→±∞

‖ψ(t)− ψ±(t)‖ = lim
t→±∞

‖ψ(0)−W (t)ψ±(0)‖ = 0,
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so that ψ±(t) are the incoming and outgoing asymptotic states. In physical models it is
important to have as many scattering states as possible, preferably Ran(W±) is the whole
Hilbert space L2(R). Note that scattering states have initial values in RanW+ ∩ RanW−.

Proposition 3.2.4. Assume that L has an eigenvalue λ for the eigenvalue u ∈ D(L), and
consider the solution ψ(t) = exp(−iλt)u to (3.1.1), see Exercise 3.1.2. Then ψ has no (incom-
ing or outgoing) asymptotic states unless u is an eigenvector for L0 for the same eigenvalue
λ.

Proof. Assume ψ(t) = exp(−iλt)u has an incoming asymptotic state, so that there exists a
v ∈ L2(R) such that W−v = u or limt→−∞W (t)v = u = ψ(0). This means ‖ exp(−itL0)v −
exp(−itL)u‖ = ‖ exp(−itL0)v − exp(−itλ)u‖ → 0 as t → −∞, and using the isometry
property this gives ‖ v − exp(−it(λ− L0))u‖ → 0 as t→ −∞. For s ∈ R fixed we get

‖e−i(t+s)(λ−L0)u− e−it(λ−L0)u‖ ≤ ‖e−i(t+s)(λ−L0)u− v‖+ ‖v − e−it(λ−L0)u‖ → 0, t→ −∞,

and so ‖e−is(λ−L0)u − u‖ → 0 as t → −∞, but since the expression is independent of t, we
actually have e−is(λ−L0)u = u for arbitrary s, so that by Exercise 3.1.2, we have L0u = λu. A
similar reasoning applies to outgoing states.

Exercise 3.2.5. Put W (L,L0) as the strong operator limit of eitLe−itL0 to stress the depen-
dence on the self-adjoint operators L and L0. Investigate how W±(L0, L) and W±(L,L0) are
related. Show also that W±(A,B) = W±(A,C)W±(C,B) for self-adjoint A,B,C ∈ B(H)
assuming that the wave operators exist. (See also Proposition 3.4.4.)

Theorem 3.2.6. D(W±) and Ran(W±) are closed subspaces of L2(R).

Proof. Consider a convergent sequence {fn}∞n=1, fn → f in L2(R) with fn ∈ D(W+). We need
to show that f ∈ D(W+). Recall that W (t) ∈ B(L2(R)) and consider

‖W (t)f −W (s)f‖ ≤ ‖W (t)(f − fn)‖+ ‖W (s)(fn − f)‖+ ‖
(
W (t)−W (s)

)
fn‖

= 2 ‖f − fn‖+ ‖
(
W (t)−W (s)

)
fn‖

using that W (t) and W (s) are isometries. For ε > 0 arbitrary, we can find N ∈ N such
that for n ≥ N we have ‖f − fn‖ ≤ ε

2
, since fn → f in L2(R). And since fN ∈ D(W+) we

have limt→∞W (t)fN exists, so there exists T > 0 such that for s, t ≥ T we have ‖
(
W (t) −

W (s)
)
fN‖ ≤ ε

2
. So ‖W (t)f − W (s)f‖ ≤ ε, hence limt→∞W (t)f exists, and f ∈ D(W+).

Similarly, D(W−) is closed.
Next take a convergent sequence {fn}∞n=1, fn ∈ Ran(W+), fn → f in L2(R). Take gn ∈

D(W+) with W+gn = fn, then

‖gn − gm‖ = ‖W+(gn − gm)‖ = ‖fn − fm‖,

since W+ is an isometry. So {gn}∞n=1 is a Cauchy sequence in D(W+) ⊂ L2(R), hence conver-
gent to, say, g ∈ D(W+), since D(W+) is closed. Now

‖fn −W+g‖ = ‖W+(gn − g)‖ = ‖gn − g‖ → 0, n→∞,

so f = W+g ∈ Ran(W+). Similarly, Ran(W−) is closed.
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So a scattering state ψ has an incoming state and an outgoing state, and their respective
values for t = 0 are related by the wave operators;

W+ψ+(0) = ψ(0) = W−ψ−(0).

Since the wave operator W− is an isometry from its domain to its range, it is injective, and
we can write

ψ+(0) = Sψ−(0), S = (W+)−1W−.

S is the scattering operator; it relates the incoming asymptotic state ψ− with the outgoing
asymptotic state ψ+ for a scattering state ψ. Note that S = (W+)−1W− with

D(S) = {f ∈ D(W−) | W−f ∈ Ran(W+)}.

Theorem 3.2.7. D(S) = D(W−) if and only if Ran(W−) ⊂ Ran(W+) and Ran(S) = D(W+)
if and only if Ran(W+) ⊂ Ran(W−).

Corollary 3.2.8. S : D(W−) → D(W+) is unitary if and only if Ran(W+) = Ran(W−).

So we can rephrase Corollary 3.2.8 as S is unitary if and only if all solutions with an
incoming asymptotic state also have an outgoing asymptotic state and vice versa. Loosely
speaking, there are only scattering states.

Proof of Theorem 3.2.7. Consider the first statement. If Ran(W−) ⊂ Ran(W+), then D(S) =
{f ∈ D(W−) | W−f ∈ Ran(W+)} = D(W−) since the condition is true. Conversely, if
D(S) = D(W−), we have by definition W−f ∈ Ran(W+) for all f ∈ D(W−), or Ran(W−) ⊂
Ran(W+).

For the second statement, note that Sf = g means f ∈ D(S) and W+g = W−f , so
Ran(S) = {g ∈ D(W+) | W+g ∈ Ran(W−)}. So if Ran(W+) ⊂ Ran(W−), the condition is
void and Ran(S) = D(W+). Conversely, if Ran(S) = D(W+), we have W+g ∈ Ran(W−) for
all g ∈ D(W+) or Ran(W+) ⊂ Ran(W−).

The importance of the wave operators is that they can be used to describe possible unitary
equivalences of the operators L and L0.

Exercise 3.2.9. Let L, L0 be (possibly unbounded) self-adjoint operators with LU = UL0

for some unitary operator U . Show that all spectra σ, σp, σpp, σess, σac, σsc for L and L0 are
the same.

Such self-adjoint operators which are unitarily equivalent have the same spectrum, knowing
the wave operators plus the spectral decomposition of one of the operators gives the spectral
decomposition of the other operator. However, the situation is not that nice, since the wave
operators may not be defined on the whole Hilbert space or the range of the wave operators
may not be the whole Hilbert space. So we need an additional definition, see also Section 6.2
for unexplained notions and notation.



32 Chapter 3: Scattering and wave operators

Definition 3.2.10. A closed subspace V of an Hilbert space H is said to reduce, or to be a
reducing subspace for, the operator (T,D(T )) if the orthogonal projection P onto V preserves
the domain of T , P : D(T ) → D(T ), and commutes with T , PT ⊂ TP .

Note that for a self-adjoint operator (T,D(T )) and a reducing subspace V , the orthocom-
plement V ⊥ is also a reducing subspace for (T,D(T )).

We first discuss reduction of the bounded operators e−itL0 and e−itL, and from this, using
Stone’s Theorem 6.4.2, for the unbounded self-adjoint operators L0 and L.

Theorem 3.2.11. For each t ∈ R we have

e−itL0 : D(W+) → D(W+), e−itL0 : D(W−) → D(W−),

e−itL : Ran(W+) → Ran(W+), e−itL : Ran(W−) → Ran(W−)

and
W+e−itL0 = e−itLW+, W−e−itL = e−itL0W−.

Since
(
e−itL0

)∗
= eitL0 and

(
e−itL

)∗
= eitL by the self-adjointness of L and L0, we obtain

e−itL0 : D(W+)⊥ → D(W+)⊥, e−itL0 : D(W−)⊥ → D(W−)⊥,

e−itL : Ran(W+)⊥ → Ran(W+)⊥, e−itL : Ran(W−)⊥ → Ran(W−)⊥.

By Theorem 3.2.6 the subspaces D(W±), Ran(W±) are closed, and since orthocomple-
ments are closed as well, we can rephrase the first part of Theorem 3.2.11.

Corollary 3.2.12. D(W±) and D(W±)⊥ reduce e−itL0 and Ran(W±) and Ran(W±)⊥ reduce
e−itL.

Proof of Theorem 3.2.11. Take f ∈ D(W+) and put g = W+f and consider

W (t)e−isL0f − e−isLg = eitLe−itL0e−isL0f − e−isLg = eitLe−i(s+t)L0f − e−isLg

= e−isLei(s+t)Le−i(s+t)L0f − e−isLg = e−isLW (t+ s)f − e−isLg = e−isL
(
W (t+ s)f − g

)
and since e−isL is an isometry we find, for s ∈ R fixed,

‖W (t)e−isL0f − e−isLg‖ = ‖W (t+ s)f − g‖ → 0, t→∞.

In particular, e−isL0f ∈ D(W+) and W+e−isL0f = e−isLg = e−isLW+f . This proves that
e−isL0 preserves D(W+) and that e−isL preserves Ran(W+) and W+e−isL0 = e−isLW+.

The statement for W− is proved analogously.

In order to see that these spaces also reduce L and L0 we need to consider the orthogonal
projections on D(W±) and Ran(W±) in relation to the domains of L and L0. We use the
characterisation of the domain of L, respectively L0, as those f ∈ L2(R) for which the limit
limt→0

1
t

(
exp(−itL)f−f

)
, respectively limt→0

1
t

(
exp(−itL0)f−f

)
, exists, see Stone’s Theorem

6.4.2.
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Theorem 3.2.13. D(W+) and D(W−) reduce L0 and Ran(W+) and Ran(W−) reduce L.

Proof. We show that first statement. Let P+ : L2(R) → L2(R) be the orthogonal projections
on D(W+). Then we have to show first that P+ preserves the domain D(L0). Take f ∈ D(L0),
then for all t ∈ R\{0} we have

1

t

(
e−itL0P+f − P+f

)
= P+

(1

t

(
e−itL0f − f

))
by Corollary 3.2.12. For f ∈ D(L0) the right hand side converges as t→ 0 by Stone’s Theorem
6.4.2 and continuity of P+. Hence the left hand side converges. By Stone’s Theorem 6.4.2 it
follows that P+f ∈ D(L0).

For f ∈ D(L0) we multiply this identity by i and take the limit t → 0. Again by Stone’s
Theorem 6.4.2 it follows that L0P

+f = P+L0f for all f ∈ D(L0). Since D(L0) = D(P+L0) ⊂
D(L0P

+) = {f ∈ L2(R) | P+f ∈ D(L0)} we get P+L0 ⊂ L0P
+.

Exercise 3.2.14. Prove the other cases of Theorem 3.2.13.

In view of Theorems 3.2.11 and 3.2.13 we may expect that the wave operators intertwine
L and L0. This is almost true, and this is the content of the following Theorem 3.2.15.

Theorem 3.2.15. Let P be the orthogonal projection on Ker(L0)
⊥, then LW+P = W+L0

and LW−P = W−L0.

Note that this is a statement for generally unbounded operators, so that this statement
also involves the domains of the operators. In case L0 has trivial kernel, we see that W+

and W− intertwine the self-adjoint operators. In particular, in case the wave operators are
unitary, we see that L and L0 are unitarily equivalent, and so by Exercise 3.2.9 have the same
spectrum.

Proof. Observe first that Ker(L0)
⊥ = Ran(L0). Indeed, we have for arbitrary f ∈ Ker(L0)

and for arbitrary g ∈ D(L0) the identity 0 = 〈L0f, g〉 = 〈f, L0g〉, since L0 is self-adjoint.
Next we note that, with the notation P± for the orthogonal projection on the domains

D(W±) for the wave operators as in Theorem 3.2.13, we have PP±P = P±P . Indeed, this is
obviously true on Ker(L0) since both sides are zero. For any f ∈ Ran(L0) put f = L0g, so that
PP+Pf = PP+f = PP+L0g = PL0P

+g = L0P
+g = P+L0g = P+f = P+Pf by Theorem

3.2.13 (twice) and the observation PL0 = L0. So the result follows for any f ∈ Ran(L0),
and since orthogonal projections are bounded operators the result follows for Ran(L0) by
continuity of the projections. The case for P− is analogous.

We first show that LW+P ⊃ W+L0. So take f ∈ D(W+L0) = {f ∈ D(L0) | L0f ∈
D(W+)}. Then f = Pf+(1−P )f , so that f ∈ D(L0), (1−P )f ∈ Ker(L0) ⊂ D(L0) shows that
Pf ∈ D(L0). Since with D(W+), also D(W )⊥, reduces L0, we see that (1− P+)Pf ∈ D(L0)
and

L0(1− P+)Pf = (1− P+)L0Pf = (1− P+)L0f

since L0Pf = L0f +L0(1−P )f = L0f as 1−P projects onto Ker(L0). Since f ∈ D(W+L0),
we have L0f ∈ D(W+), so that (1− P+)L0f = 0. We conclude that (1− P+)Pf ∈ Ker(L0)
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and P (1−P+)Pf = 0 or Pf = P 2f = PP+Pf = P+Pf , where the last equality follows from
the second observation in this proof. Now Pf = P+Pf says Pf ∈ D(W+) or f ∈ D(W+P ).

As a next step we show that W+Pf ∈ D(L), and for this we use Stone’s Theorem 6.4.2.
So, using Theorem 3.2.11,

1

t

(
e−itL − 1

)
W+Pf = W+ 1

t

(
e−itL − 1

)
Pf. (3.2.1)

Since Pf ∈ D(L0), limt→0
1
t

(
e−itL − 1

)
Pf exists and since the domain of W+ is closed it

follows that the right hand side has a limit −iW+LPf as t→ 0. So the left hand side has a
limit, and by Stone’s Theorem 6.4.2, we have W+Pf ∈ D(L) and the limit is −iLW+Pf . So
f ∈ D(LW+P ) and LW+Pf = W+L0Pf , and since L0Pf = L0f we have W+L0 ⊂ LW+P .

Conversely, to show LW+P ⊂ W+L0, take f ∈ D(LW+P ), or Pf ∈ D(W+) and W+Pf ∈
D(L). So, again by Stone’s Theorem 6.4.2, limt→0

1
t
(e−itL− 1)W+Pf exists, and since (3.2.1)

is valid, we see that W+ 1
t
(e−itL0 − 1)Pf converges to, say, g = −iLW+Pf . Since W+ is

continuous, g ∈ Ran(W+) = Ran(W+) by Theorem 3.2.6. So g = W+h for some h ∈ L2(R),
and

‖1

t

(
e−itL0 − 1

)
Pf − h‖ = ‖W+ 1

t

(
e−itL0 − 1

)
Pf −W+h‖ = ‖W+ 1

t

(
e−itL0 − 1

)
Pf − g‖ → 0,

as t → ∞. Again, by Stone’s Theorem 6.4.2, Pf ∈ D(L0) and −iL0Pf = h, and thus
W+L0Pf = iW+h = ig = LW+Pf . As before, with Pf ∈ D(L0) it follows f ∈ D(L0)
and L0Pf = L0f , so that we have f ∈ D(W+L0) and LW+Pf = W+L0f . This proves
LW+P ⊂ W+L.

The case W− is analogous.

Exercise 3.2.16. Consider the operator L0 = i d
dx

with domain W 1(R), then L0 is an un-
bounded self-adjoint operator on L2(R), see Lemma 2.1.2. For L we take i d

dx
+ q, for some

potential function q.

• Show that U(t) = eitL0 is a translation operator, i.e.
(
U(t)f

)
(x) = f(x+ t).

• Define M to be the multiplication operator by a function Q. Show that for iQ′ = qQ
we have L0M = M L. What conditions on q imply that M : L2(R) → L2(R) is a
unitary operator? Give a domain D(L) such that (L,D(L)) is an unbounded self-adjoint
operator on L2(R).

• Conclude that eitL = M∗eitL0M = M∗U(t)M , and W (t) = M∗U(t)MU(−t) is a multi-
plication operator.

• What conditions on q ensure that W± exist? What are W± in this case? Describe the
scattering operator S = (W+)−1W− as well in this case. (Hint: S is a multiple of the
identity.)
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3.3 Domains of the wave operators for the Schrödinger

operator

In Sections 3.1, 3.2 the situation was completely general. In this section we discuss conditions
on the potential q of the Schrödinger equation L =− d2

dx2 +q, such that D(W±) equal the whole
Hilbert space L2(R).

The idea of the method, due to Cook, is based on the observation that for a f ∈ C1(R)
with integrable derivative, f ′ ∈ L1(R), the limit limt→∞ f(t) exists. This follows from the
estimate

|f(t)− f(s)| = |
∫ t

s

f ′(x) dx| ≤
∫ t

s

|f ′(x)| dx→ 0

for s < t and s, t tend to ∞. Similarly, the limit limt→−∞ f(t) exists. Cook’s idea is also used
in Theorem 3.4.9. This gives rise to the following description.

Proposition 3.3.1. Assume that exp(−itL0)f ∈ D(L0)∩D(L) for all t ≥ a for some a ∈ R,
and that ∫ ∞

a

‖(L− L0)e
−itL0f‖ dt <∞,

then f ∈ D(W+). Similarly, if exp(−itL0)g ∈ D(L0) ∩ D(L) for all t ≤ b for some b ∈ R,
and that ∫ b

−∞
‖(L− L0)e

−itL0g‖ dt <∞,

then g ∈ D(W−).

Proof. Recalling W (t)f = eitLe−itL0f , we see that

W ′(t)f = iL eitLe−itL0f − ieitLL0e
−itL0f,

where we need exp(−itL0)f ∈ D(L), f ∈ D(L0), cf. Theorem 3.1.1. Since this shows
exp(−itL0)f ∈ D(L) ∩ D(L0) we have W ′(t)f = i exp(itL)

(
L − L0

)
exp(−itL0)f and hence

‖W ′(t)f‖ = ‖(L− L0) exp(−itL0)f‖.
Apply now the previous observation to get for arbitrary u ∈ L2(R),

|〈W (t)f, u〉 − 〈W (s)f, u〉| ≤
∫ t

s

|〈W ′(x)f, u〉| dx ≤ ‖u‖
∫ t

s

‖W ′(x)f‖ dx,

which shows that

‖W (t)f −W (s)f‖ ≤
∫ t

s

‖W ′(x)f‖ dx ≤
∫ t

s

‖(L− L0) exp(−ixL0)f‖ dx.

By assumption for t > s ≥ a, the right hand side integrated over [a,∞) is finite. Hence,
limt→∞W (t)f exists, or f ∈ D(W+).
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Theorem 3.3.2. Let L be the Schrödinger operator, where the potential q satisfies the con-
ditions of Corollary 2.2.6, and L0 is the unperturbed operator − d2

dx2 with domain W 2(R). If
x 7→ (1 + |x|)αq(x) is an element of L2(R) for some α > 1

2
, then D(W+) = L2(R) = D(W−).

The following gives a nice special case of the theorem.

Corollary 3.3.3. Theorem 3.3.2 holds true if the potential q is locally square integrable and
for some β > 1 the fuction x 7→ |x|βq(x) is bounded for |x| → ∞.

Exercise 3.3.4. Prove Corollary 3.3.3 from Theorem 3.3.2.

Proof of Theorem 3.3.2. The idea is to show that we can use Proposition 3.3.1 for sufficiently
many functions. Consider the function fs(λ) = λ exp(−λ2 − isλ) for s ∈ R. Then fs ∈
L1(R)∩L2(R). We want to exploit the fact that the Fourier transform diagonalises L0 = − d2

dx2 ,
see Theorem 2.1.1 and its proof. We consider us = F−1fs, then(

e−itL0us
)
(x) = F−1

(
e−itλ

2

fs(λ)
)
(x) =

1√
2π

∫
R
eiλ(x−s)−λ2(1+it)λdλ

=
exp
(−(x−s)2

4(1+it)

)
√

2π

∫
C
e−z

2
( z√

1 + it
+
i(x− s)

2(1 + it)

) dz√
1 + it

by switching to z =
(√

1 + it
)(
λ − i

2
x−s
1+it

)
. Here the square root is

√
z =

√
|z|ei 12 arg z for

| arg z| < π, and the contour C in the complex plane is a line corresponding to the image of
the real line under this coordinate transformation.

Lemma 3.3.5.
∫
C e

−z2dz =
√
π,
∫
C e

−z2zdz = 0.

Using Lemma 3.3.5 we see that(
e−itL0us

)
(x) =

i(x− s)(√
2 + 2it

)3 exp
(−(x− s)2

4(1 + it)

)
,

so ∣∣(e−itL0us
)
(x)
∣∣ ≤ |x− s|2(

4 + 4t2
)3/4 exp

(−(x− s)

4(1 + t2)

)
.

Now we have

‖(L− L0)e
−itL0us‖2 = ‖qe−itL0us‖2 =

∫
R

|q(x)(x− s)|2(
4 + 4t2

)3/2 exp
(−(x− s)2

2(1 + t2)

)
dx,

which we have to integrate with respect to t in order to be able to apply Proposition 3.3.1.
Using the estimate e−x ≤ (1 + x

a
)−a for x ≥ 0 and a ≥ 0, we get

exp
(−(x− s)2

2(1 + t2)

)
≤
(
1 +

(x− s)2

2a(1 + t2)

)−a
= (2a)a(1 + t2)a

(
2a(1 + t2) + (x− s)2

)−a
≤ (2a)a(1 + t2)a|x− s|−2a
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so that

‖(L− L0)e
−itL0us‖2 ≤ C(1 + t2)a−

3
2

∫
R
|q(x)|2|x− s|2−2a dx

and noting |x− s| ≤ (1 + |x|)(1 + |s|) and inserting this estimate gives, assuming a ≤ 1,

‖(L− L0)e
−itL0us‖2 ≤ C(1 + t2)a−3/2

∫
R
|q(x)|2(1 + |x|)2−2a dx

with the constant C independent of x and t, but depending on s and a. Hence,∫
R
‖(L− L0)e

−itL0us‖ dt ≤ C

∫
R
(1 + t2)a/2−3/4 dt

(∫
R
|q(x)|2(1 + |x|)2−2a dx

)1/2

and the integral with respect to t is finite for 3
2
− a > 1 or a < 1

2
and the integral with respect

to x is the L2(R)-norm of x 7→ q(x)(1 + |x|)1−a, and this is finite by assumption if 1− a ≤ α.
Since we need 0 ≤ a < 1

2
, we see that the integral is finite for a suitable choice of a if α > 1

2
.

By Proposition 3.3.1 we see that us ∈ D(W±) for arbitrary s ∈ R.

Lemma 3.3.6. {us | s ∈ R} is dense in L2(R).

Now Lemma 3.3.6 and Theorem 3.2.6 imply that D(W+) = L2(R) = D(W−).

Exercise 3.3.7. Prove Lemma 3.3.5 and Lemma 3.3.6. For the proof of Lemma 3.3.5 use
that the lemma is true if C = R and Cauchy’s theorem from Complex Function Theory on
shifting contours for integrals of analytic functions. For the proof of Lemma 3.3.6 proceed as
follows; take g ∈ L2(R) orthogonal to any us, then

0 = 〈g, us〉 = 〈Fg,Fus〉 =

∫
R

(
Fg
)
(λ)λe−λ

2

eisλ dλ

for any s, i.e. the Fourier inverse of
(
Fg
)
(λ)λe−λ

2
equals zero. Conclude that g has to be

zero in L2(R).

3.4 Completeness

As stated in Section 3.2 we want as many scattering states as possible. Moreover, by Proposi-
tion 3.2.4, the discrete spectrum is not be expected to be related to scattering states, certainly
not for the Schrödinger operator L and unperturbed Schrödinger operator − d2

dx2 , since for the
last one σp = ∅, whereas the discrete spectrum of the Schrödinger operator L may be non-
trivial. For this reason we need to exclude eigenvectors, and we go even one step further by
restricting to the subspace of absolute continuity, see Section 6.6. Again, we phrase the results
for the self-adjoint Schrödinger operators L and L0 acting on the Hilbert space L2(R), but
the results hold in generality for self-adjoint operators on a Hilbert space.

We assume that the domains of the wave operator W± at least contain the absolute
continuous subspace L2(R)ac(L0) for the operator L0.
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Exercise 3.4.1. Show that for the unperturbed Schrödinger operator − d2

dx2 the subspace of
absolute continuity is equal to L2(R), so Pac = 1.

Definition 3.4.2. Let L and L0 be self-adjoint operators on the Hilbert space L2(R). The
generalised wave operators Ω± = Ω±(L,L0) exist if L2(R)ac(L0) ⊂ D(W±), and Ω± =
W± Pac(L0).

We first translate some of the results of the wave operators obtain in Section 3.2 to the
generalised wave operators Ω±.

Proposition 3.4.3. Assume that Ω± exist, then

1. Ω± are partial isometries with inital space Ran(Pac(L0)) and final space Ran(Ω±),

2. Ω±(D(L0)) ⊂ D(L) and LΩ± = Ω± L0,

3. Ran(Ω±) ⊂ Ran(Pac(L)).

Proof. The first statement follows from the discussion following Definition 3.2.2. The sec-
ond statement follows from Theorem 3.2.13 and Theorem 3.2.15 and the observation that
Ker(L0) ⊂ RanPpp(L0) ⊂

(
RanPac(L0)

)⊥
and Theorem 6.6.2. By the second result we see

that the generalised wave operators intertwine L
∣∣
Ran(Ω±)

with L0

∣∣
Ran(Pac(L0))

and by the first

statement this equivalence is unitary. So L
∣∣
Ran(Ω±)

only has only absolutely continuous spec-

trum or Ran(Ω±) ⊂ Pac(L), see Section 6.6.

The next proposition should be compared to Exercise 3.2.5, and because we take into
account the projection onto the absolutely continuous subspace some more care is needed.

Proposition 3.4.4. Let A,B,C be self-adjoint operators, and assume that Ω±(A,B) and
Ω±(B,C) exist, then Ω±(A,C) exist and Ω±(A,C) = Ω±(A,B)Ω±(B,C).

In particular, Ω±(A,A) = Pac(A), which follows by definition.

Proof. Since Ω+(B,C) exists, it follows from the third statement of Proposition 3.4.3 that
Ran(Ω+(B,C)) ⊂ Ran(Pac(B)), so for any ψ ∈ L2(R) we have

(
1 − Pac(B)

)
Ω+(B,C)ψ = 0,

or

lim
t→∞

‖
(
1− Pac(B)

)
eitBe−itCψ‖ = 0.

Now

eitAe−itCPac(C)ψ = eitAe−itBeitBe−itCPac(C)ψ

= eitAe−itBPac(B)eitBe−itCPac(C)ψ + eitAe−itB(1− Pac(B))eitBe−itCPac(C)ψ.
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Put Ω+(B,C)ψ = φ, and Ω+(A,B)φ = ξ, then

‖eitAe−itCPac(C)ψ − ξ‖ ≤ ‖eitAe−itBPac(B)eitBe−itCPac(C)ψ − ξ‖
+ ‖eitAe−itB(1− Pac(B))eitBe−itCPac(C)ψ‖

≤ ‖eitAe−itBPac(B)eitBe−itCPac(C)ψ − eitAe−itBPac(B)φ‖+ ‖eitAe−itBPac(B)φ− ξ‖
+ ‖(1− Pac(B))eitBe−itCPac(C)ψ‖

≤ ‖eitBe−itCPac(C)ψ − φ‖+ ‖eitAe−itBPac(B)φ− ξ‖+ ‖(1− Pac(B))eitBe−itCPac(C)ψ‖

and since each of these three terms tends to zero as t→∞, the result follows.

Completeness is related to the fact that we only have scattering states, i.e. any solution
to the time-dependent Schrödinger equation with an incoming asymptotic state also has an
outgoing asymptotic state and vice versa. This is known as weak asymptotic completeness, and
for the generalised wave operators this means Ran(Ω+(L,L0)) = Ran(Ω−(L,L0)). We have

strong asymptotic completeness if Ran(Ω+(L,L0)) = Ran(Ω−(L,L0)) =
(
Ppp(L)L2(R)

)⊥
.

Here Ppp(L) is the projection on the closure of the subspace of consisting of all eigenvectors of
L, see Section 6.6. In this section we have an intermediate notion for completeness, and here
Pac(L) denotes the orthogonal projection onto the absolutely continuous subspace for L, see
Section 6.6.

Definition 3.4.5. Assume Ω±(L,L0) exist, then we say that the generalised wave operators
are complete if Ran(Ω+(L,L0)) = Ran(Ω−(L,L0)) = Ran(Pac(L)).

Note that completeness plus empty singular continous spectrum of L, see Section 6.6, is
equivalent to asymptotic completeness.

Theorem 3.4.6. Assume Ω±(L,L0) exist. Then the generalised wave operators Ω±(L,L0)
are complete if and only if the generalised wave operators Ω±(L0, L) exist.

Proof. Assume first that Ω±(L,L0) and Ω±(L0, L) exist. By Proposition 3.4.4 we have

Pac(L) = Ω±(L,L) = Ω±(L,L0)Ω
±(L0, L),

so that Ran(Pac(L)) ⊂ Ran(Ω±(L,L0)). Since Proposition 3.4.3 gives the reverse inclusion,
we have Ran(Pac(L)) = Ran(Ω±(L,L0)), and so the generalised wave operators are complete.

Conversely, assume completeness of the wave operators Ω±(L,L0). For φ ∈ Pac(L) =
Ran(Ω+(L,L0)) we have ψ such that φ = Ω+(L,L0)ψ, or

‖eitLe−itL0Pac(L0)ψ − φ‖ = ‖e−itL0Pac(L0)ψ − e−itLφ‖ = ‖Pac(L0)ψ − eitL0e−itLφ‖

tends to zero as t → ∞. It follows that strong limit of eitL0e−itL exists on the absolutely
continuous subspace for L, hence Ω+(L0, L) exists.
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Theorem 3.4.6 gives a characterisation that is usually hard to establish. The reason is that
L0 is the unperturbed “simple” operator, and we can expect to have control on its absolutely
continuous subspace and its spectral decomposition, but in order to apply Theorem 3.4.6 one
also needs to know these properties of the perturbed operator, which is much harder. There
are many theorems (the so-called Kato-Birman theory) on the existence of the generalised
wave operators if L and L0 (or f(L) and f(L0) for a suitable function f) differ by a trace-class
operator. This is less applicable for the Schrödinger operators.

Definition 3.4.7. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H. A closed
operator (S,D(S)) on H is T -smooth if there exists a constant C such that for all x ∈ H the
element eitTx ∈ D(S) for almost all t ∈ R and

1

2π

∫
R
‖SeitT x‖2 dt ≤ C ‖x‖2.

The notion of T -smooth is stronger than the assumption occuring in the Rellich Pertur-
bation Theorem 2.2.4.

Proposition 3.4.8. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H, and the
closed operator (S,D(S)) on H be T -smooth. Then for all ε > 0 there exists a K such that

‖Sx‖ ≤ ε ‖Tx‖+K ‖x‖, ∀x ∈ D(T ).

Moreover, Ran(S∗) ⊂ Hac(T ).

Proof. Use the functional calculus and the formula

1

x− a
= i

∫ ∞

0

e−ixteiat dt, =a > 0,

to find for y ∈ D(S∗), x ∈ H, the expression

−i 〈R(λ+ iε)x, S∗y〉 =

∫ ∞

0

〈e−itTx, S∗y〉 eiλte−εt dt =

∫ ∞

0

〈Se−itTx, y〉 eiλte−εt dt

for all ε > 0, where R(z) = (T − z)−1, z ∈ ρ(T ), is the resolvent for T , see Section 6.4. To
estimate this expression we use the Cauchy-Schwarz inequality (6.1.1) in L2(0,∞);

|〈R(λ+ iε)x, S∗y〉| ≤ ‖y‖
∫ ∞

0

‖Se−itTx‖e−εt dt

≤ ‖y‖
(∫ ∞

0

‖Se−itTx‖2 dt

) 1
2
(∫ ∞

0

e−2εt dt

) 1
2

≤ ‖y‖√
2ε

√
2πC ‖x‖,

since S is T -smooth. It follows that y 7→ 〈S∗y,R(λ+ iε)x〉 is continuous, so that R(λ+ iε)x ∈
D(S∗∗) = D(S), since S is closed, and ‖SR(λ+ iε)x‖ ≤

√
πC
ε
‖x‖. Since Ran(R(z)) = D(T ),

see Lemma 6.2.2, we see that D(T ) ⊂ D(S). Now for x ∈ D(T ) write

‖Sx‖ = ‖SR(λ+iε)(T−(λ+iε))x‖ ≤
√
πC

ε
‖(T−(λ+iε))x‖ ≤

√
πC

ε

(
‖Tx‖+

√
λ2 + ε2‖x‖

)



Chapter 3: Scattering and wave operators 41

and take ε big in order to obtain the result.
Next, use the closedness of Hac to reduce to proving Ran(S∗) ⊂ Hac(T ). Take x = S∗y ∈

Ran(S∗) and consider almost everywhere

√
2π F (t) =

∫
R
e−itu dEx,x(u) = 〈e−itTx, x〉 = 〈e−itTx, S∗y〉 = 〈Se−itTx, y〉,

where E is the spectral measure for the self-adjoint operator T . Now estimate |F (t)| ≤
‖Se−itTx‖‖y‖ to see that F ∈ L2(R). Since F is the Fourier transform of the measure Ex,x
we see from the Plancherel Theorem, see Section 6.3, that Ex,x is absolutely continuous by
Ex,x(B) =

∫
B

(
F−1F

)
(λ) dλ, B Borel set. Hence, x is in the absolutely continuous subspace

for T .

Theorem 3.4.9. Assume L and L0 are self-adjoint operators such that L = L0 +A∗B in the
following sense; D(L) ⊂ D(A), D(L0) ⊂ D(B) and for all x ∈ D(L), y ∈ D(L0)

〈Lx, y〉 = 〈x, L0y〉+ 〈Ax,By〉.

Assume that A is L-smooth and B is L0-smooth, then the wave operators W± exist as unitary
operators.

In particular, RanW+ = RanW− = H. Note that Theorem 3.4.9 does not deal yet with
generalised wave operators, so it cannot be applied to the Schrödinger operators once the
perturbed one has discrete spectrum, cf. Proposition 3.2.4. Moreover, it still has the problem
that there is a smoothness condition with respect to the perturbed operator L. The proof of
Theorem 3.4.9 is based on the idea of Cook as for Proposition 3.3.1.

Proof. Take x ∈ D(L0) and consider w(t) = eitLe−itL0x. Take y ∈ D(L) and consider

d

dt
〈w(t), y〉 =

d

dt
〈e−itL0x, e−itLy〉 = −i〈L0 e

−itL0x, e−itLy〉+ i〈e−itL0x, L e−itLy〉

= i〈B e−itL0x,A e−itLy〉

since e−itL0x ∈ D(L), eitLy ∈ D(L0). Consequently, for t > s

|〈w(t)− w(s), y〉| ≤
∫ t

s

|〈B e−iuL0x,A e−iuLy〉| du ≤
∫ t

s

‖B e−iuL0x‖ ‖Ae−iuLy‖ du

≤
(∫ t

s

‖B e−iuL0x‖2 du

) 1
2
(∫ t

s

‖Ae−iuLy‖2 du

) 1
2

≤
(∫ t

s

‖B e−iuL0x‖2 du

) 1
2
(∫

R
‖Ae−iuLy‖2 du

) 1
2

≤ C‖y‖
(∫ t

s

‖B e−iuL0x‖2 du

) 1
2

for some constant C since A is L-smooth. In particular, we see

‖w(t)− w(s)‖ ≤ C

(∫ t

s

‖B e−iuL0x‖2 du

) 1
2

(3.4.1)
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and since the integrand is integrable over R we see that w(s) is Cauchy as s → ∞. So the
domain of W+ contains the dense subset D(L0), and since D(W+) is closed by Theorem 3.2.6
it follows that D(W+) is the whole Hilbert space. Similarly for W−.

Since the problem is symmetric in L and L0, i.e. L0 = L−B∗A it follows that the strong
limits of eitL0e−itL also exist for t → ±∞. Since these are each others inverses, unitarity
follows.

Theorem 3.4.9 can be used to discuss completeness for the Schrödinger operator − d2

dx2 + q,
but the details are complicated. We only discuss globally the proof of Theorem 3.4.13. For
this we first give a condition on the resolvent of T and S for S to be a T -smooth operators
using the Fourier transform.

First recall, that for F : R → H a a Hilbert space valued function, such that
∫

R ‖F (t)‖ dt <
∞ (and t 7→ 〈F (t), y〉 is measurable for all y ∈ H) we can define

∫
R F (t) dt ∈ H. In-

deed, y 7→
∫

R〈y, F (t)〉 dt is bounded and now use Riesz’s representation theorem. Note
that

∥∥ ∫
R F (t) dt

∥∥ ≤
∫

R ‖F (t)‖ dt. For such a function F we define its Fourier transform
as
(
FF

)
(λ) = 1√

2π

∫
R e

−iλt F (t) dt as an element of H.

Lemma 3.4.10. Let (S,D(S)) be a closed operator on H, then∫
R
‖S
(
FF

)
(λ)‖2 dλ =

∫
R
‖SF (t)‖2 dt,

where the left hand side is set to ∞ in case FF (λ) /∈ D(S) almost everywhere, and similarly
for the right hand side.

Exercise 3.4.11. Prove Lemma 3.4.10 according to the following steps.

• First take S bounded, then for any x ∈ H we see that 〈SFF (λ), x〉 = 〈FF (λ), S∗x〉 is
the (ordinary) Fourier transform of 〈SF (t), x〉 = 〈F (t), S∗x〉. Use Plancherel and next
take x elements of an orthonormal basis of the Hilbert space (we assume H separable)
Deduce

∫
R ‖SFF (λ)‖2 dλ =

∫
R ‖SF (t)‖2 dt.

• Next assume (S,D(S)) self-adjoint with spectral decomposition E. Use the previous
result for SE(−n, n) and use that if F (t) ∈ D(S) almost everywhere ‖SE(−n, n)F (t)‖2

converges monotonically to ‖SF (t)‖2 as n → ∞. Now use the monotone convergence
theorem.

• For arbitrary (S,D(S)) we take its polar decomposition S = U |S| with D(|S|) = D(S),
(|S|, D(|S|)) self-adjoint and ‖ |S|x‖ = ‖Sx‖ for all x ∈ D(S) = D(|S|).

Apply Lemma 3.4.10 (with the Fourier transform replaced by the inverse Fourier transform)
to F (t) = e−itTx to get for ε > 0 and R(z) the resolvent for T∫

R
‖SR(λ+ iε)x‖2 dλ = 2π

∫ ∞

0

e−2εt‖Se−itTx‖2 dt.
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Similarly, we obtain for ε > 0∫
R
‖SR(λ− iε)x‖2 dλ = 2π

∫ 0

−∞
e2εt‖Se−itTx‖2 dt.

Using the Parseval version one can also derive∫
R
〈SR(λ+ iε)x, SR(λ− iε)y〉 dλ = 0

assuming the integral exists. In particular, we get

4ε2

∫
R
‖SR(λ+ iε)R(λ− iε)x‖2 dλ =

∫
R
‖S
(
R(λ+ iε)−R(λ− iε)

)
x‖2 dλ

= 2π

∫
R
e2εt‖Se−itTx‖2 dt.

using the resolvent equation R(µ)−R(λ) = (µ− λ)R(µ)R(λ).

Proposition 3.4.12. S is a T -smooth operator if and only if

sup
ε>0

∫
R
‖SR(λ+ iε)x‖2 + ‖SR(λ− iε)x‖2 dλ <∞.

If ε‖SR(λ + iε)‖2 ≤ C or if ε‖SR(λ − iε)‖2 ≤ C independently of ε > 0, λ ∈ R, then S is
T -smooth.

Proof. The first statement is already proved. For the second statement we use

2π

∫
R
e2εt‖Se−itTx‖2 dt = 4ε2

∫
R
‖SR(λ+ iε)R(λ− iε)x‖2 dλ ≤ 4εC

∫
R
‖R(λ− iε)x‖2 dλ

and now use the Spectral Theorem 6.4.1 to observe

‖R(λ− iε)x‖2 = 〈R(λ+ iε)R(λ− iε)x, x〉 =

∫
R

1

|t− λ− iε|2
dEx,x(t).

So we can rewrite the right hand side as

4εC

∫
R

∫
R

1

|t− λ− iε|2
dEx,x(t) dλ = 4εC

∫
R

∫
R

1

|t− λ− iε|2
dλ dEx,x(t)

(interchanging is valid since the integrand is positive), and the inner integral∫
R

1

|t− λ− iε|2
dλ =

∫
R

1

(t− λ)2 + ε2
dλ =

1

ε
arctan

(λ− t

ε

)∣∣∣∞
λ=−∞

=
π

ε
.
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So we get

4εC

∫
R

∫
R

1

|t− λ− iε|2
dEx,x(t) dλ = 4πC

∫
R
dEx,x(t) = 4πC‖x‖2

by the Spectral Theorem 6.4.1. So this leads to

2π

∫
R
e2εt‖Se−itTx‖2 dt ≤ 4πC‖x‖2, (3.4.2)

or S is T -smooth.

The machinery of T -smooth operators and in particular Theorem 3.4.9 can be applied to
the Schrödinger operator, but the proof is very technical and outside the scope of these lecture
notes.

Theorem 3.4.13. Assume q ∈ L1(R) ∩ L2(R), and let L0 = − d2

dx2 , L = − d2

dx2 + q, then the
wave operators Ω±(L,L0) are complete

We put

a(x) =

{√
|q(x)|, q(x) 6= 0,

e−x
2

q(x) = 0
, b(x) =

q(x)

a(x)
.

Then we are in the situation of Theorem 3.4.9, but the space of absolute continuity has
to brought into play. This is done by employing the spectral decomposition and assuming
that there exists an open set Z such E(Z) corresponds to the orthogonal projection on the
absolutely continuous subspace. Next it turns out that even for R being the resolvent of L0 =
− d2

dx2 one cannot prove the sufficient condition of Proposition 3.4.12 since there is no estimate
uniformly in λ ∈ R. One first shows that the condition can be relaxed to ε‖AR(λ± iε)‖2 ≤ CI
independently of ε > 0, λ ∈ I for any interval I with compact closure in Z, where E(Z) is
Pac.

For R the resolvent of L0 and B multiplication by b this is easily checked. Note that in
the application indeed b ∈ L2(R).

Lemma 3.4.14. With R the resolvent of L0 = − d
dx2 and B the multiplication operator by

b ∈ L2(R) we have ε‖BR(λ± iε)‖2 ≤ CI for all intervals I with compact closure in (0,∞).

Note that BR(z), =z 6= 0, is a compact operator. Indeed, by Theorem 2.3.4 B is L0-
compact, and if {fn}∞n=1 is a bounded sequence, say ‖fn‖ ≤M , in L2(R) then we have

‖R(z)fn‖+ ‖L0R(z)fn‖ ≤M‖R(z)‖+ ‖(L0 − z)R(z)fn‖+ ‖zR(z)fn‖
≤M(‖R(z)‖+ |z|) +M,

so that the sequence is bounded. Hence, B being L0-compact we see that BR(z)fn has a
convergent subsequence, so that BR(z) is a compact operator.
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Proof. For this we need the resolvent of L0, which we claim equals(
R(z)f

)
(x) =

−1

2γi

∫
R
eiγ|x−y| f(y) dy

where z = γ2 ∈ C\R and =γ > 0, see Exercise 2.1.5.
Assuming this we see using the Cauchy-Schwarz inequality (6.1.1) in L2(R),

|b(x)
(
R(z)f

)
(x)|2 ≤ |b(x)|2

4|γ|2

∫
R
e−2=γ |x−y| dy

∫
R
|f(y)|2 dy =

|b(x)|2

4|γ|2

∫
R
e−2=γ |y| dy‖f‖2

= ‖f‖2 |b(x)|2

4|z| =γ
=⇒ ‖BR(z)f‖2 ≤ ‖f‖2‖a‖2

4|z| =γ

giving the required estimate.

The analogous statement to Lemma 3.4.14 with R the resolvent for the perturbed operator
and the multiplication by a ∈ L2(R) is a much harder statement to prove. The idea is to rewrite
the relation in Theorem 3.4.9 for the resolvent as

AR(z) = AR0(z) + A
(
BR0(z̄)

)∗
AR(z) =⇒

(
1− A

(
BR0(z̄)

)∗)
AR(z) = AR0(z)

where we denote the resolvent for L by R and the resolvent for L0 by R0. If we now can show
that 1 − A

(
BR0(z̄)

)∗
is invertible and if we have sufficient control on its inverse we can use

Lemma 3.4.14 once more to find the result. In particular one needs the inverse to be uniformly
bounded in a neighbourhood of an interval I (with I as in Lemma 3.4.14). We will not go
into this, but refer to Schechter [10] and Reed and Simon [9].
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Chapter 4

Schrödinger operators and scattering
data

4.1 Jost solutions

The unperturbed Schrödinger operator − d2

dx2 has eigenvalues λ = γ2 for the corresponding
eigenfunctions exp(±iγx). If the potential q is of sufficient decay at ±∞ we can expect
that eigenfunctions of the Schrödinger equation − d2

dx2 + q exist that behave as exp(±iγx) for
x→ ±∞. These solutions are known as the Jost1 solutions.

The basic assumption in this chapter on the potential q is that it is a real-valued function
that has sufficient decay. This is specified in each of the results.

Definition 4.1.1. The Schrödinger integral equation at ∞ is the integral equation

f(x) = eiγx −
∫ ∞

x

sin(γ(x− y))

γ
q(y) f(y) dy

and the Schrödinger integral equation at −∞ is the integral equation

f(x) = e−iγx +

∫ x

−∞

sin(γ(x− y))

γ
q(y) f(y) dy

For f a solution to the Schrödinger integral equation at ∞ we can formally calculate

f ′(x) = iγeiγx +
sin(γ(x− x))

γ
q(x) f(x)−

∫ ∞

x

cos(γ(x− y)) q(y) f(y) dy

= iγeiγx −
∫ ∞

x

cos(γ(x− y)) q(y) f(y) dy =⇒

f ′′(x) = −γ2eiγx + cos(γ(x− x)) q(x) f(x) + γ

∫ ∞

x

sin(γ(x− y)) q(y) f(y) dy

= −γ2f(x) + q(x) f(x),

1Res Jost, Swiss theoretical physicist.

47
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so that it gives a solution to the Schrödinger eigenvalue equation −f ′′+qf = γ2 f . The integral
equation can be derived by viewing f ′′+γ2 f = u, u = q f , as an inhomogeneous linear second-
order differential equation and apply the method of variation of constants. Similarly, a solution
of the Schrödinger integral equation at −∞ gives rise to an eigenfunction of the Schrödinger
operator for the eigenvalue γ2. The Schrödinger integral equation can also be obtained using
the method of variation of constants for f ′′ + γ2f = g, and then take g = qf .

The three-dimensional analogue of the Schrödinger integral equations in quantum mechan-
ics are known as the Lippmann-Schwinger equation.

Theorem 4.1.2. Assume that the potential q is a real-valued integrable function. Let γ ∈ C,
=γ ≥ 0, γ 6= 0. Then the Schrödinger integral equation at ∞ has a unique solution f+

γ which
is continuously differentiable and satisfies the estimates

|f+
γ (x)− eiγx| ≤ e−x=γ

∣∣exp(
1

|γ|

∫ ∞

x

|q(y)| dy)− 1
∣∣

|
df+
γ

dx
(x)− iγ eiγx| ≤ |γ| e−x=γ

∣∣exp(
1

|γ|

∫ ∞

x

|q(y)| dy)− 1
∣∣.

Moreover, the Schrödinger integral equation at −∞ has a unique solution f−γ which is contin-
uously differentiable and satisfies the estimates

|f−γ (x)− e−iγx| ≤ ex=γ
∣∣exp(

1

|γ|

∫ x

−∞
|q(y)| dy)− 1

∣∣,
|
df−γ
dx

(x) + iγeiγx| ≤ |γ| ex=γ
∣∣exp(

1

|γ|

∫ x

−∞
|q(y)| dy)− 1

∣∣.
Using ex − 1 ≤ xex we can estimate

|f+
γ (x)− eiγx| ≤ e−x=γ

1

|γ|

∫ ∞

x

|q(y)| dy exp(
1

|γ|

∫ ∞

x

|q(y)| dy),

|
df+
γ

dx
(x)− iγ eiγx| ≤ e−x=γ

∫ ∞

x

|q(y)| dy exp(
1

|γ|

∫ ∞

x

|q(y)| dy),
(4.1.1)

and a similar estimate for f−γ and its derivative.

Since q is real-valued it follows that for x ∈ R we have f+
γ (x) = f+

−γ̄(x) and f−γ (x) = f−−γ̄(x)
as solutions to the Schrödinger integral equations. Since q is integrable function and f+

γ ∈
C1(R) is bounded for x→∞, the differentiations in the calculations preceding Theorem 4.1.2
are justifiable using Lebesgue’s Theorems 6.1.3 and 6.1.4 on differentiation and dominated
convergence and hold almost everywhere. The solutions in Theorem 4.1.2 are known as Jost
solutions.

Proof. The Schrödinger integral equations are Volterra2 type integral equations, and a stan-
dard way to find a solution is by successive iteration. Put f0(x) = e−iγx, and define

fn+1(x) = −
∫ ∞

x

sin(γ(x− y))

γ
q(y) fn(y) dy, n ≥ 0.

2Vito Volterra (3 May 1860 — 11 October 1940), Italian mathematician.
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Put mn(x) = e−iγxfn(x), so that mn is defined inductively by m0(x) = 1 and

mn+1(x) = −
∫ ∞

x

sin(γ(x− y))

γ
eiγ(y−x) q(y)mn(y) dy

=

∫ ∞

x

1

2iγ
(e2iγ(y−x) − 1) q(y)mn(y) dy, n ≥ 0.

Now ∣∣sin(γ(x− y)) eiγ(y−x)
∣∣ =

1

2

∣∣1− e2iγ(y−x)
∣∣ ≤ 1

2

(
1 + e−2(y−x)=γ) ≤ 1

for y ≥ x and =γ ≥ 0. Hence, assuming =γ ≥ 0 we find∣∣mn+1(x)
∣∣ ≤ 1

|γ|

∫ ∞

x

|q(y)| |mn(y)| dy,

and then we have by induction on n the estimate |mn(x)| ≤
(
R(x)

)n
|γ|n n!

, where

R(x) =

∫ ∞

x

|q(y)| dy ≤
∫

R
|q(y)| dy = ‖q‖1.

Indeed, for n = 0 this inequality is valid since m0(x) = 1, and

∣∣mn+1(x)
∣∣ ≤ 1

|γ|

∫ ∞

x

|q(y)|
(
R(y)

)n
|γ|n n!

dy =
1

|γ|n+1 n!

∫ R(x)

0

sn ds =

(
R(x)

)n+1

|γ|n+1 (n+ 1)!

by putting s = R(y), so ds = −|q(y)| dy and the interval [x,∞) is mapped to [0, R(x)], since
R is decreasing.

So the series
∑∞

n=0mn(x) converges uniformly, and so does the series
∑∞

n=0 fn(x), for
=γ ≤ 0. It is straightforward to check that the series

∑∞
n=0 fn(x) gives a solution to the

Schrödinger equation at ∞, and this solution we denote by f+
γ . Then

|f+
γ (x)− eiγx| ≤

∞∑
n=1

|fn(x)| ≤ e−x=γ
∞∑
n=1

|mn(x)| ≤ e−x=γ| exp(R(x)/|γ|)− 1| → 0, x→∞

for fixed γ ∈ C with γ 6= 0, =γ ≥ 0.
Note that m0 ∈ C∞(R) for all γ ∈ C, and since the integrals defining mn(x) in terms of

mn−1 converge absolutely for =γ ≥ 0 we see that each mn is at least in C1(R). Consequently,
fn ∈ C1(R), and

dfn+1

dx
(x) = −

∫ ∞

x

cos(γ(x−y)) q(y) fn(y) dy = −
∫ ∞

x

cos(γ(x−y)) eiγy q(y)mn(y) dy (4.1.2)

and now using ∣∣cos(γ(x− y)) eiγy
∣∣ = |eiγx|1

2

∣∣1 + e2iγ(y−x)| ≤ e−x=γ
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for y ≥ x, =γ ≥ 0. This gives∣∣∣∣dfn+1

dx
(x)

∣∣∣∣ = e−x=γ
∫ ∞

x

|q(y)| |mn(y)| dy ≤ e−x=γ
∫ ∞

x

|q(y)|
(
R(x)

)n
|γ|n n!

dy =
e−x=γ

(
R(x)

)n+1

|γ|n (n+ 1)!
.

It follows that the series
∑∞

n=0
dfn

dx
(x) converges uniformly on compact subsets of R, so this is

a continuous function and f+
γ ∈ C1(R). We find for =γ ≥ 0∣∣∣∣df+

γ

dx
(x)− iγeiγx

∣∣∣∣ ≤ ∞∑
n=1

∣∣∣∣dfndx (x)

∣∣∣∣ ≤ ∞∑
n=1

e−x=γ
(
R(x)

)n
|γ|n−1 n!

= |γ| e−x=γ (exp(R(x)/|γ|)− 1)

which tends to zero as x→∞.
In order to see that this solution is unique, let f and g be two C1-solutions to the

Schrödinger integral equation at ∞. Then h(x) = e−iγx(f(x)− g(x)) is a solution to

h(x) = −
∫ ∞

x

sin(γ(x− y))

γ
eiγ(y−x) q(y)h(y) dy.

Let x0 ∈ R be arbitrary, and put L = supx≥x0
|h(x)| < ∞, since f and g remain bounded as

x → ∞. So |h(x)| ≤ L for all x ≥ x0, and by induction, using the integral representation as

before, we find |h(x)| ≤ L

(
R(x)
)n

|γ|n n!
≤ L

‖q‖n
1

|γ|n n!
for all n ∈ N. Hence, h(x) = 0 for all x ≥ x0, and

since x0 ∈ R is arbitrary, h = 0 and uniqueness follows.
The statements for the Schrödinger integral equation at −∞ are proved analogously, and

are left as an exercise.

Exercise 4.1.3. With the assumptions in Theorem 4.1.2 and assuming that q is moreover an
element of Ck(R). Show that f+

γ , f
−
γ ∈ Ck+2.

From the proof of Theorem 4.1.2 we obtain the following corollary, since a series of analytic
functions is analytic if the convergence is uniformly on compact sets and each fn is analytic
in γ for =γ > 0.

Corollary 4.1.4. γ 7→ f+
γ (x), γ 7→ df+

γ

dx
and γ 7→ f−γ (x), γ 7→ df−γ

dx
are analytic in γ for =γ > 0

and continuous in γ for =γ ≥ 0, γ 6= 0.

Note that in the proof of Theorem 4.1.2 we actually deal with m+
γ (x) = e−iγxf+

γ (x) and
m−
γ (x) = eiγxf−γ (x). These functions are solutions to the differential equation

m′′ + 2iγ m′ = q m (4.1.3)

as follows by a straightforward calculation, and they are the solutions to an integral equation;

m(x) = 1 +

∫ ∞

x

e2iγ(y−x) − 1

2iγ
q(y)m(y) dy (4.1.4)

for m = m+
γ and a similar one for m−

γ .
The estimates in Theorem 4.1.2 can be improved by imposing more conditions on the

potential q. We discuss two possible extensions. The first additional assumption also allows
an extension to the case γ = 0.
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Theorem 4.1.5. Assume the potential q is real-valued and
∫

R(1 + |x|)|q(x)| dx < ∞. Then
for γ ∈ C with =γ ≥ 0,

|f+
γ (x)− eiγx| ≤ C e−x=γ

1 + |γ|
(1 + max(−x, 0))

∫ ∞

x

(1 + |y|)|q(y)| dy

|
df+
γ

dx
(x)− iγ eiγx| ≤ C e−x=γ

1 + |γ|

∫ ∞

x

(1 + |y|)|q(y)| dy,

where C is a constant only depending on the potential q. Moreover, the Schrödinger integral
equation at −∞ has a unique solution f−γ which is continuously differentiable and satisfies the
estimates

|f−γ (x)− e−iγx| ≤ C e−x=γ

1 + |γ|
(1 + max(x, 0))

∫ x

−∞
(1 + |y|)|q(y)| dy

|
df−γ
dx

(x) + iγeiγx| ≤ C e−x=γ

1 + |γ|

∫ x

−∞
(1 + |y|)|q(y)| dy.

Proof. In particular, the potential q satisfies the estimate of Theorem 4.1.2, and the estimates
given there hold.

Use the estimate ∣∣ 1

2iγ
(e2iγ(y−x) − 1)

∣∣ ≤ (y − x)

for γ ∈ R, y − x ≥ 0 and iterate to find

|mn(x)| ≤
∫∫

· · ·
∫
x≤y1≤y2···≤yn

(y1 − x)(y2 − y1) · · · (yn − yn−1)|q(y1)| · · · |q(yn)| dyn · · · dy1

≤
∫∫

· · ·
∫
x≤y1≤y2···≤yn

(y1 − x)(y2 − x) · · · (yn − x)|q(y1)| · · · |q(yn)| dyn · · · dy1.

Note that the integrand is invariant with respect to permutations of y1 up to yn, but not
the region. Taking all possible orderings gives, where Sn is the group of permutations on n
elements,

n! |mn(x)|

≤
∑
w∈Sn

∫∫
· · ·
∫
x≤yw(1)≤yw(2)···≤yw(n)

(y1 − x)(y2 − x) · · · (yn − x)|q(y1)| · · · |q(yn)| dyn · · · dy1

=

∫ ∞

x

∫ ∞

x

· · ·
∫ ∞

x

(y1 − x)(y2 − x) · · · (yn − x)|q(y1)| · · · |q(yn)| dyn · · · dy1

=
(∫ ∞

x

(y − x) |q(y)| dy
)n
,

so that, with R(x) =
∫∞
x

(y − x) |q(y)| dy, we get

|m+
γ (x)| ≤ exp(R(x))− 1 ≤ R(x) exp(R(x)).
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Note that R(x) ≥ R(y) for x ≤ y. Here we use again ex − 1 ≤ xex.
Next consider the estimate for m+

γ by

|m+
γ (x)| ≤ 1 +

∫ ∞

x

(y − x)|q(y)| |m+
γ (y)| dy

= 1 +

∫ ∞

x

y|q(y)| |m+
γ (y)| dy + (−x)

∫ ∞

x

|q(y)| |m+
γ (y)| dy

≤ 1 +

∫ ∞

0

y|q(y)| |m+
γ (y)| dy + (−x)

∫ ∞

x

|q(y)| |m+
γ (y)| dy

and observe that this inequality holds for positive and negative x ∈ R. We estimate the first
term, which is independent of x, by

1 +

∫ ∞

0

y|q(y)| |m+
γ (y)| dy ≤ 1 +R(0) exp(R(0))

∫ ∞

0

y|q(y)| dy

= 1 +
(
R(0)

)2
exp(R(0)) = C1 <∞

where C1 is a finite constant only depending on R(0) =
∫∞

0
y|q(y)| dy.

Now define M(x) =
m+

γ (x)

C1(1+|x|) , p(x) = (1 + |x|)|q(x)|, then can rewrite the implicit estimate

on m+
γ (x) in terms of M(x) as follows;

C1(1 + |x|)|M(x)| ≤ C1 + (−x)
∫ ∞

x

C1(1 + |t|) |q(t)| |M(t)| dt

=⇒ |M(x)| ≤ 1

1 + |x|
+

−x
1 + |x|

∫ ∞

x

p(t) |M(t)| dt

≤ 1 +

∫ ∞

x

p(t) |M(t)| dt,

(4.1.5)

so that as before, cf. proof of Theorem 4.1.2, or using Gronwall’s3 Lemma, see Exercise 4.1.6,
we get

|M(x)| ≤ exp
(∫ ∞

x

p(y) dy
)
≤ exp

(∫
R
(1 + |y|) |q(y)| dy

)
= C2 <∞.

So |m+
γ (x)| ≤ C3(1 + |x|) with C3 = C1C2 only depending on properties of q. This estimate is

now being used to estimate

|m+
γ (x)− 1| ≤

∫ ∞

0

y|q(y)| |m+
γ (y)| dy + (−x)

∫ ∞

x

|q(y)| |m+
γ (y)| dy

≤ R(0) exp(R(0))

∫ ∞

0

y|q(y)| dy + (−x)C3

∫ ∞

x

(1 + |y|) |q(y)| dy

3Thomas Hakon Grönwall (16 January 1877 — 9 May 1932), Swedish-American mathematician, engineer,
chemist.
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and for x ≤ 0 we can estimate this by

≤ R(0) exp(R(0))

∫ ∞

x

(1 + |y|) |q(y)| dy + |x|C3

∫ ∞

x

(1 + |y|) |q(y)| dy

≤ C4(1 + |x|)
∫ ∞

x

(1 + |y|) |q(y)| dy

with C4 = max
(
R(0) exp(R(0)), C3

)
only depending on properties of q. For x ≥ 0 we already

have the estimate

|m+
γ (x)− 1| ≤ R(x) exp(R(x)) ≤ R(x) exp(R(0)) = exp(R(0))

∫ ∞

x

(y − x) |q(y)| dy

≤ exp(R(0))

∫ ∞

x

y |q(y)| dy ≤ exp(R(0))

∫ ∞

x

(1 + |y|) |q(y)| dy.

Taking C5 = max(C4, exp(R(0))) then gives

|m+
γ (x)− 1| ≤ C5(1 + max(0,−x))

∫ ∞

x

(1 + |y|) |q(y)| dy,

which is an estimate uniform in γ ∈ R. Combining this estimate in case |γ| ≤ 1 with the
estimate of Theorem 4.1.2 in case |γ| ≥ 1 gives the result for γ ∈ R. By Corollary 4.1.4 and
Theorem 4.1.2 the result is extended to γ ∈ C, =γ ≥ 0.

Differentiating (4.1.4) gives

dm+
γ

dx
(x) = −

∫ ∞

x

e2iγ(y−x)q(y)m+
γ (y) dy,

so that

|
dm+

γ

dx
(x)| ≤ C

∫ ∞

x

|q(y)|(1 + max(0,−y))
1 + |γ|

dy,

which gives the result. The statements for f−γ are proved analogously.

Exercise 4.1.6. Assume f , p positive continuous functions. and f(x) ≤ K +
∫∞
x
f(t)p(t) dt,

then f(x) ≤ K exp(
∫∞
x
p(t) dt. This is known as Gronwall’s Lemma. Prove this according to

the following steps.

• Observe that
f(x)p(x)

K +
∫∞
x
f(t)p(t) dt

≤ p(x)

and integrate both sides.

• Exponentiate the resulting inequality to get K+
∫∞
x
f(t)p(t) dt ≤ K exp(

∫∞
x
p(t) dt, and

deduce the result.

At what cost can we remove the continuity assumption on f and p?
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Corollary 4.1.7. Under the assumptions of Theorem 4.1.5 γ 7→ e−iγxf+
γ (x)−1 is an element

of the Hardy class H+
2 for each fixed x ∈ R. Moreover, the H+

2 -norm can be estimated
uniformly for x ∈ [x0,∞).

Proof. Put γ = α+ iβ, with β > 0, and so |γ| ≥ |α| and consider∫
R
|e−iγxf+

γ (x)− 1|2 dα ≤
(
C(1 + max(−x, 0))

∫
R
(1 + |y|) |q(y)| dy

)∫
R
| 1

1 + |α|
|2 dα <∞

independent of β = <γ > 0 by Theorem 4.1.5.

The second extension of Theorem 4.1.2 deals with analytic extensions of the Jost function
with respect to γ under the assumption that the potential decays even faster.

Theorem 4.1.8. Let q be a real-valued potential. Assume that there exists m > 0 such that∫
R e

2m|y||q(y)| dy <∞, then

|f+
γ (x)− eiγx| ≤ e−x=γ

∣∣exp
(
C(γ,m)e−2mx0

∫ ∞

x

e2my|q(y)| dy
)
− 1
∣∣,

|
df+
γ

dx
(x)− iγeiγx| ≤ e−x=γ

C(γ,m)

∣∣exp
(
C(γ,m)e−2mx0

∫ ∞

x

e2my|q(y)| dy
)
− 1
∣∣,

for =γ > −m, x ≥ x0, where

C(γ,m) =
1

ε+ 2|<γ|

with ε = 2 min(m,m+=γ). In particular, γ 7→ f+
γ (x) and γ 7→ df+

γ

dx
(x) are analytic for γ ∈ C

with =γ > −m for fixed x ≥ x0.

Using ex − 1 ≤ xex we see that

|f+
γ (x)− eiγx| ≤ e−x=γC(γ,m)e−2mx0

∫ ∞

x

e2my|q(y)| dy exp
(
C(γ,m)e−2mx0

∫ ∞

x

e2my|q(y)| dy
)
,

and similarly for its derivative, which is similar to the estimate in Theorem 4.1.5, but note
that the γ-region where this estimate is valid is much larger.

Proof. Since the assumption implies that q is integrable, Theorem 4.1.2 shows that there
is a unique solution f+

γ , and we only need to improve the estimates. Using the estimate

| sin z| ≤ 2|z|
1+|z| exp(|=z|) for z ∈ C (prove this estimate) we can now estimate, for y ≥ x ≥ x0,∣∣∣∣1γ sin(γ(x− y)) eiγ(y−x)

∣∣∣∣ ≤ 2|x− y|
1 + |γ| |x− y|

e(y−x)|=γ|e−(y−x)=γe−2m(y−x)e2mye−2mx

≤ 2|x− y|
1 + |γ| |x− y|

e(y−x)
(
|=γ|−=γ−2m

)
e−2mx0e2my ≤ C(γ,m) e−2mx0 e2my
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for =γ > −m. Here C(γ,m) is a finite constant indepent of x and y, which we discuss later
in the proof.

Under this assumption we now have for x ≥ x0 where we take x0 = 0 for simplicity

|mn+1(x)| ≤ C(γ,m)e−2mx0

∫ ∞

x

e2my |q(y)| |mn(y)| dy,

hence we obtain in a similar way the estimate

|mn(x)| ≤
(
C(γ,m)

)n
e−2mnx0

(∫∞
x
e2my|q(y)| dy

)n
n!

for x ≥ x0, which gives the result.
It remains to discuss the constant C(γ,m). Let ε = 2(m+=γ) > 0, in case 0 ≤ =γ < −m

and ε = 2m in case =γ ≥ 0, then we see that we can take for C(γ,m) the maximum of the
function

x 7→ 2x

1 + |γ|x
e−εx, x ≥ 0.

A calculation shows that the maximum is attained for 1
2|γ|(−1 +

√
1 + 4|γ|

ε
) = 2

ε(1+
q

1+
4|γ|

ε
)
.

The maximum is

2 exp
(
−2/(1 +

√
1 + 4|γ|

ε
)
)

ε(1 +
√

1 + 4|γ|
ε

)2

≤ 1

ε+ 2|γ|
≤ 1

ε+ 2|<γ|
= C(γ,m).

Next we use (4.1.2) and the estimate

| cos(γ(x− y))eiγy| ≤ e−2mx0e−x=γe(y−x)
(
|=γ|−=γ−2m

)
e2my ≤ e−2mx0e−x=γe2my

for x ≥ x0 and =γ > −m. This gives∣∣∣∣dfn+1

dx
(x)

∣∣∣∣ ≤ e−2mx0e−x=γ
∫ ∞

x

e2my|q(y)| |mn(y)| dy

≤ e−2mx0e−x=γ
(
C(γ,m)

)n
e−2mnx0

1

n!

∫ ∞

x

e2my|q(y)|
(∫ ∞

y

e2mt|q(t)| dt
)n

dy

= e−x=γ
(
C(γ,m)

)n
e−2m(n+1)x0

1

(n+ 1)!

(∫ ∞

x

e2my|q(y)| dy
)n+1

and this estimate gives the result as in Theorem 4.1.2.

Exercise 4.1.9. Prove the corresponding statements for the Jost solution f−γ under the as-
sumptions on the potential q in Theorem 4.1.8;

|f−γ (x)− e−iγx| ≤ ex=γ
∣∣exp

(
C(γ,m)e2mx0

∫ x

−∞
e−2my|q(y)| dy

)
− 1
∣∣,

|
df−γ
dx

(x) + iγe−iγx| ≤ ex=γ

C(γ,m)

∣∣exp
(
C(γ,m)e2mx0

∫ x

−∞
e−2my|q(y)| dy

)
− 1
∣∣,
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for =γ > −m, x ≤ x0 with (Cγ,m) as in Theorem 4.1.8. Conclude γ 7→ f−γ (x) and γ 7→ df−γ
dx

(x)
are analytic for γ ∈ C with =γ > −m for fixed x ≤ x0.

We also need some properties of the Jost solutions when differentiated with respect to γ.

Proposition 4.1.10. Assume that
∫

R |x|
k|q(x)| dx < ∞ for k = 0, 1, 2, then

∂m+
γ

∂γ
(x) is a

continously differentiable function, and it is the unique solution to the integral equation

n(x) = M(x) +

∫ ∞

x

e2iγx − 1

2iγ
q(y)n(y) dy,

M(x) =

∫ ∞

x

(
y − x

γ
e2iγ(y−x) − e2iγ(y−x) − 1

2iγ2

)
q(y)m+

γ (y) dy,

with limx→∞m(x) = 0.

It follows from the proof below that we can also estimate
∂m+

γ

∂γ
(x) explicitly. Moreover, it

is a solution to
n′′ + 2iγ n′ = q n− 2im+

γ ,

i.e. the differential equation (4.1.3) differentiated with respect to γ. Switching back to the

Jost solution f+
γ , we see that we find a solution

∂f+
γ

∂γ
(x) = −ixe−iγxm+

γ (x) + e−iγx
∂m+

γ

∂γ
(x) to

−f ′′ + q f = γ2 f + 2γ f+
γ .

Proof. Rewrite (4.1.4) with m(x, γ) = m+
γ (x),

m(x, γ) = 1 +

∫ ∞

x

D(y − x, γ) q(y)m(y, γ) dy, D(x, γ) =
e2iγx − 1

2iγ
=

∫ x

0

e2iγt dt.

Denoting ṁ(x, γ) = ∂m
∂γ

(x, γ), we see that ṁ satisfies the integral equation

ṁ(x, γ) = M(x, γ) +

∫ ∞

x

D(y − x, γ) q(y) ṁ(y, γ) dy,

M(x, γ) =

∫ ∞

x

Ḋ(y − x, γ) q(y)m(y, γ) dy,

which we consider as an integral equation for ṁ(x, γ) with known function M and which want
to solve in the same way by an iteration argument;

h0(x) = M(x, γ), hn+1(x) =

∫ ∞

x

D(y − x, γ) q(y)hn(y) dy, ṁ(x, γ) =
∞∑
n=0

hn(x).

The iteration scheme is the same as in the proof of Theorem 4.1.2 except for the initial
condition. So we investigate the initial function M(x, γ). Note that

|Ḋ(x, γ)| = |
∫ x

0

2ite2iγt dt| = |x
γ
e2iγx − 1

γ
D(x, γ)| ≤ 1

|γ|2
(1 + |γ|x)
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for x ≥ 0, =γ ≥ 0, so that

|M(x, γ)| ≤
∫ ∞

x

1

|γ|2
(1 + |γ|(y − x))|q(y)| |m+

γ (y)| dy

By the estimate |m+
γ (y)| ≤ C(1 + |y|), cf. the proof of Theorem 4.1.5, we get

|M(x, γ)| ≤ 1

|γ|2

∫ ∞

x

(1 + |y|) |q(y)| dy +
1

|γ|

∫ ∞

x

(y − x)|q(y)| (1 + |y|) dy

and the first integral is bounded and tends to zero for x→∞, and for the second integral we
use ∫ ∞

x

(y − x)|q(y)| (1 + |y|) dy =

∫ ∞

x

y|q(y)| (1 + |y|) dy + (−x)
∫ ∞

x

|q(y)| (1 + |y|) dy

≤
∫ ∞

0

|q(y)| (|y|+ |y|2) dy + (−x)
∫ ∞

x

|q(y)| (1 + |y|) dy = K(x),

cf. proof of Theorem 4.1.5. So M(x) is bounded, and even tends to zero, for x → ∞ since∫∞
x

(y − x)|q(y)|(1 + |y|) dy ≤
∫∞
x
|q(y)|(|y| + |y|2) dy → 0 and grows at most linearly for

x→ −∞,

|M(x, γ)| ≤ C

|γ|2

∫ ∞

x

(1 + |y|) |q(y)| dy +
C

|γ|
K(x) = K1(x)

Note that K1(x) ≥ K1(y) for x ≤ y, and then we find

|hn(x)| ≤
K1(x)

|γ|nn!

(∫ ∞

x

|q(y)| dy
)n

and we find a solution to the integral equation. The remainder of the proof follows the lines
of proofs of Theorems 4.1.2 and 4.1.5 and is left as an exercise.

Exercise 4.1.11. Finish the proof of Proposition 4.1.10, and state and prove the correspond-
ing proposition for m−

γ .

4.2 Scattering data: transmission and reflection coeffi-

cients

We assume that the potential q is a real-valued integrable function, so that Theorem 4.1.2 ap-
plies. We also assume the conditions of Theorems 2.3.4, so that the corresponding Schrödinger
operator is self-adjoint with essential spectrum [0,∞). So we get several solutions of the eigen-
value equation for the operator − d2

dx2 + q for the eigenvalue λ = γ2, γ ∈ R \ {0}. In particular
we get f+

γ , f+
−γ, f

−
γ , f−−γ all as solutions of the eigenvalue equation, so there are relations

amongst them since the solution space is 2-dimensional. In order to describe these we con-
sider the Wronskian4 W (f, g)(x) = f(x)g′(x)− f ′(x)g(x). The Wronskian of two solutions of
the eigenvalue equation is non-zero if and only if the solutions are linearly independent.

4Josef Hoëné de Wronski (23 August 1778 — 8 August 1853), Polish-French mathematician.
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Proposition 4.2.1. Assume q is a continuous real-valued integrable potential. For two so-
lutions f1, f2 to −f ′′ + qf = λf , the Wronskian W (f1, f2) is constant, and in particular
W (f+

γ , f
+
−γ) = −2iγ and W (f−γ , f

−
−γ) = 2iγ, γ ∈ R\{0}.

Proof. Differentiating gives

d

dx
[W (f, g)](x) = f(x)g′′(x)− f ′′(x)g(x) = (q(x)− λ)f(x)g(x)− (q(x)− λ)f(x)g(x) = 0,

since f and g are solutions to the eigenvalue equation. In particular, in case f = f+
γ , g = f+

−γ
we can evaluate this constant by taking x→∞ and using the asymptotics of Theorem 4.1.2.
Similarly for the Wronskian of f−±γ.

Exercise 4.2.2. In case the function q is not continuous, the derivative of the Wronskian has
to be interpreted in the weak sens. Modify Proposition 4.2.1 and its proof accordingly.

Since we now have four solutions, two by two linearly independent for γ 6= 0, to the
Schrödinger eigenvalue equation which has a two-dimensional solution space, for the eigenvalue
λ = γ2, γ ∈ R\{0}, we obtain functions a±, b± on R\{0} such that for all x ∈ R,

f−γ (x) = a+
γ f

+
γ (x) + b+γ f

+
−γ(x),

f+
γ (x) = a−γ f

−
γ (x) + b−γ f

−
−γ(x).

Note that for γ ∈ R\{0} the relation f±γ (x) = f±−γ(x) implies a+
γ = a+

−γ, b
+
γ = b+−γ, a

−
γ = a−−γ

and b−γ = b−−γ. Now

2iγ = W (f−γ , f
−
−γ) = W (a+

γ f
+
γ + b+γ f

+
−γ, a

+
−γf

+
−γ + b+−γf

+
γ )

= a+
γ a

+
−γW (f+

γ , f
+
−γ) + b+γ b

+
−γW (f+

−γ, f
+
γ ) = −2iγa+

γ a
+
−γ + 2iγb+γ b

+
−γ,

=⇒ 1 = |b+γ |2 − |a+
γ |2

for γ ∈ R\{0}.
Taking Wronskians and using Proposition 4.2.1 we obtain

a+
γ W (f+

γ , f
+
−γ) = W (f−γ , f

+
−γ) =⇒ a+

γ = − 1

2iγ
W (f−γ , f

+
−γ),

b+γ W (f+
−γ, f

+
γ ) = W (f−γ , f

+
γ ) =⇒ b+γ =

1

2iγ
W (f−γ , f

+
γ ).

Similarly, we find

a−γ =
1

2iγ
W (f+

γ , f
−
−γ), b−γ = − 1

2iγ
W (f+

γ , f
−
γ ), 1 = |b−γ |2 − |a−γ |2.

It follows that b+γ = b−γ .
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Using the Jost solutions we now define the solution ψγ(x), γ ∈ R\{0}, by the boundary
conditions at ±∞;

ψγ(x) ∼

{
T (γ) exp(−iγx), x→ −∞,

exp(−iγx) +R(γ) exp(iγx), x→∞

Note that the first condition determines ψγ up to a multiplicative constant, which is determined
by the requirement that the coefficient of exp(−iγx) is 1 as x→∞. The function T (γ) is the
transmission coefficient and R(γ) is the reflection coefficient.

A potential q satisfying the assumptions above is a reflectionless potential if R(γ) = 0 for
γ ∈ R\{0}.

Using Theorem 4.1.2 it follows that

ψγ(x) = T (γ) f−γ (x) = f+
−γ(x) +R(γ) f+

γ (x).

It follows that

T (γ) =
1

b+γ
=

1

b−γ
, R(γ) =

a+
γ

b+γ
=
a+
γ

b−γ
.

This implies for γ ∈ R\{0}

T (γ) = T (−γ), R(γ) = R(−γ), |T (γ)|2 + |R(γ)|2 = 1,

T (γ) =
2iγ

W (f−γ , f
+
γ )
, R(γ) = −

W (f−γ , f
+
−γ)

W (f−γ , f
+
γ )

(4.2.1)

Physically, |T (γ)|2 + |R(γ)|2 = 1 can be interpreted as conservation of energy for transmitted
and reflected waves.

Note that the reflection coefficient is related to waves travelling from left to right, and
we could also have (equivalently) studied the reflection coefficient R−(γ) = a−γ /b

−
γ for waves

travelling from right to left. Note that the transmission coefficient does not change. Relabeling
the reflection coefficient R+(γ) = R(γ), we define for γ ∈ R (or γ ∈ R\{0} depending on the
potential q) the scattering matrix

S(γ) =

(
T (γ) R−(γ)
R+(γ) T (γ),

)
∈ U(2), (4.2.2)

i.e. S(γ) is a 2× 2-unitary matrix. To see this we note first that, as for R(γ),

R−(γ)

T (γ)
= a−γ =

1

2iγ
W (f+

γ , f
−
−γ), R−(−γ) = R−(γ), |T (γ)|2 + |R−(γ)|2 = 1.

From the expressions in terms of Wronskians we find

R+(γ)

T (γ)
+
R−(−γ)
T (−γ)

= 0 =⇒ T (γ)R−(−γ) +R+(γ)T (−γ) = T (γ)R−(γ) +R+(γ)T (γ) = 0

which shows that the columns of S(γ) are orthogonal vectors. Since we already established
that each column vector has length 1, we obtain S(γ) ∈ U(2).



60 Chapter 4: Schrödinger operators and scattering data

Exercise 4.2.3. Work out the relation between the scattering matrix S(γ) and the scattering
operator S as defined in Section 3.2 in the case L0 = − d2

dx2 , L = − d2

dx2 + q. (Hint: use the
Fourier transform to describe the spectral decomposition of L0 in terms of a C2-vector-valued
measure, and describe the action of the scattering operator in terms of this decomposition.)

Proposition 4.2.4. Assuming the conditions of Theorem 4.1.2 we have

lim
γ→±∞

T (γ) = 1, lim
γ→±∞

R(γ) = 0.

Proof. Write f−γ (x) = e−iγx + R−
0 (x), f+

γ (x) = eiγx + R+
0 (x), df−γ

dx
(x) = −iγe−iγx + R−

1 (x)
df+γ
dx

(x) = iγeiγx +R+
1 (x), where R±

i (x), i = 0, 1, also depend on γ, so that

W (f−γ , f
+
γ ) =

(
e−iγx +R−

0 (x)
)(
iγeiγx +R+

1 (x)
)
−
(
−iγe−iγx +R−

1 (x)
)(
eiγx +R+

0 (x)
)

= 2iγ + iγeiγxR−
0 (x) + e−iγxR+

1 (x) +R−
0 (x)R+

1 (x)

+ iγe−iγxR+
0 (x)− eiγxR−

1 (x)−R+
0 (x)R−

1 (x).

Theorem 4.1.2 shows that for real x

|R±
0 | ≤ G(γ), |R±

1 | ≤ |γ|G(γ), G(γ) = exp(‖q‖1/|γ|)− 1 = O
( 1

|γ|
)
.

Hence for γ ∈ R\{0}∣∣∣∣W (f−γ , f
+
γ )

2iγ
− 1

∣∣∣∣ ≤ 2G(γ) +
(
G(γ)

)2 → 0, |γ| → ∞.

Using (4.2.1) this gives the limit for the transmission coefficient, and from this the limit for
the reflection coefficient follows.

The transmission and reflection can be written as integrals involving the potential function
q, the solution ψγ, and the Jost solution.

Proposition 4.2.5. Assume q is continuous and satisfies the conditions of Theorem 4.1.2,
then for γ ∈ R\{0},

R(γ) =
1

2iγ

∫
R
q(x)ψγ(x) e

−iγx dx,

T (γ) = 1 +
1

2iγ

∫
R
q(x)ψγ(x) e

iγx dx,

1

T (γ)
= 1− 1

2iγ

∫
R
e−iγxq(x)f+

γ (x) dx.

In the three-dimensional analogue of Proposition 4.2.5, the last type of integrals is precisely
what can be measured in experiments involving particle collission. Again, the continuity of q
is not essential, cf. Exercise 4.2.2.
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Proof. Take f any solution to −f ′′ = γ2f and g a solution to −g′′+qg = γ2g. Proceeding as in
the proof of Proposition 4.2.1 we see that d

dx
[W (f, g)](x) = q(x)f(x)g(x), so that integrating

gives

W (f, g)(a) − W (f, g)(b) =

∫ b

a

q(x) f(x) g(x) dx.

Now use this result with f(x) = e−iγx, g(x) = ψγ(x), and take the limit a→ −∞ and b→∞.
Using the explicit expression of ψγ in terms of Jost solutions and Theorem 4.1.2, then gives∫

R
q(x)ψγ(x) e

−iγx dx = lim
b→∞

W (e−iγx, ψγ)(b)− lim
a→−∞

W (e−iγx, ψγ)(a)

= R(γ)W (e−iγx, eiγx) = 2iγ R(γ),

which gives the result for the reflection coefficient. The limits of the Wronskian follow from
Theorem 4.1.2, cf. proof of Proposition 4.2.4. The statement for the transmission coefficient
follows similarly with f(x) = eiγx.

To find other integral representations of the reflection and transmission coefficients we
write

m+
γ (x) = 1 +

∫ ∞

x

e2iγ(y−x) − 1

2iγ
q(y)m+

γ (y) dy

=
e−2iγx

2iγ

∫ ∞

x

e2iγyq(y)m+
γ (y) dy +

(
1− 1

2iγ

∫ ∞

x

q(y)m+
γ (y) dy

)
=
e−2iγx

2iγ

∫
R
e2iγyq(y)m+

γ (y) dy +

(
1− 1

2iγ

∫
R
q(y)m+

γ (y) dy

)
+ o(1), x→ −∞.

Note that the remainder terms∫ x

−∞
e2iγyq(y)m+

γ (y) dy,

∫ x

−∞
q(y)m+

γ (y) dy

are o(1), since, by Theorem 4.1.2, m+
γ is bounded for fixed γ ∈ R\{0}, and q is integrable by

assumption. So

f+
γ (x) =

e−iγx

2iγ

∫
R
eiγyq(y)f+

γ (y) dy + eiγx
(

1− 1

2iγ

∫
R
e−iγyq(y)f+

γ (y) dy

)
+ o(1), x→ −∞,

so b−γ = 1− 1
2iγ

∫
R e

−iγyq(y)f+
γ (y) dy and a−γ = 1

2iγ

∫
R e

iγyq(y)f+
γ (y) dy. Since T (γ) = 1/b−γ the

result follows.

Using Proposition 4.2.5 and its proof we can refine the asymptotic behaviour of the trans-
mission coefficient. Corollary 4.2.6 and its proof also indicate how to obtain the asymptotic
expansion of 1

T (γ)
for γ → ±∞.

Corollary 4.2.6. With the assumptions as in Proposition 4.2.5, then for =γ ≥ 0,

1

T (γ)
= 1− 1

2iγ

∫
R
q(y) dy +O(

1

|γ|2
).
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Proof. Using e−iγxf+
γ (x) = m+

γ (x) = 1 +
∑∞

n=1mn(x) with mn(x) = O( 1
|γ|n ) for γ → ±∞, see

proof of Theorem 4.1.2, in the last integral equation of Proposition 4.2.5 gives the result.

Recall that a function is meromorphic in an open domain of C if it is holomorphic except
at a set without accumulation points where the function has poles. Such a function can always
be written as a quotient of two holomorphic functions.

Theorem 4.2.7. Assume that q satisfies the assumptions of Theorems 4.1.5, 2.3.4 and Propo-
sition 4.1.10 and assume moreover q ∈ L∞(R). The reflection coefficient T is meromorphic
in the the open upper half plane =γ > 0 with a finite number of simple poles at ipn, pn > 0,
1 ≤ n ≤ N . Moreover, T is continuous in =γ ≥ 0 except for γ = 0, γ = ipn, 1 ≤ n ≤ N .
Then −p2

n, 1 ≤ n ≤ N , are the simple eigenvalues of the corresponding Schrödinger operator
with eigenfunction fn = f+

ipn
. Put Cn = limx→∞ epnxf−ipn

, then

Resγ=ipnT =
i

Cn

1

‖fn‖2
= i

ρn
Cn
. (4.2.3)

Proof. By Corollary 4.1.4 we see that W (f−γ , f
+
γ ) is analytic in γ for =γ > 0. By (4.2.1) T

is an analytic function in the open upper half plane except for poles that can only occur at
zeros of γ 7→ W (f−γ , f

+
γ ), =γ > 0.

Next using the integral representation

1

T (γ)
= 1− 1

2iγ

∫
R
q(x)m+

γ (x) dx

as in Proposition 4.2.5 and the estimate |m+
γ (x)| ≤ C(1 + |x|), see Theorem 4.1.5 and its

proof, we get that 1
T (γ)

is continuous in =γ ≥ 0, γ 6= 0, since m+
γ is continuous in =γ ≥ 0. By

(4.2.1) we have |T (γ)|−1 ≥ 1 for γ ∈ R\{0}, so that T (γ) = 1
T (γ)−1 is continuous near =γ = 0,

γ 6= 0.
For γ ∈ C, =γ > 0, we put γ = α+ iβ, β > 0, and consider, using Proposition 4.2.5,

m+
γ (x) = 1 +

∫ ∞

x

e2iγ(y−x) − 1

2iγ
q(y)m+

γ (y) dy

=
1

T (γ)
+

1

2iγ

∫ x

−∞
q(y)m+

γ (y) dy +

∫ ∞

x

e2iγ(y−x)

2iγ
q(y)m+

γ (y) dy.

We want to use this expression to establish the behaviour of m+
γ (x) as x→ −∞, so we assume

x < 0. By Theorem 4.1.2 we see that∣∣∣∣ 1

2iγ

∫ x

−∞
q(y)m+

γ (y) dy

∣∣∣∣ ≤ C

∫ x

−∞
|q(y)| dy = o(1), x→ −∞,

with C depending on q and γ, since q is integrable. Next, with C depending on q and γ,∣∣∣∣∫ ∞

x

e2iγ(y−x)

2iγ
q(y)m+

γ (y) dy

∣∣∣∣ ≤ C

∫ x/2

x

e−2β(y−x) |q(y)| dy + C

∫ ∞

x/2

e−2β(y−x) |q(y)| dy

≤ C

∫ x/2

x

|q(y)| dy + Ceβx
∫

R
|q(y)| dy
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by Theorem 4.1.2. The first term is o(1) as x → −∞, since q is integrable, and the second
term O(exβ), x→ −∞. So we obtain for γ, =γ > 0, the asymptotic behaviour

m+
γ (x) =

1

T (γ)
+ o(1), x→ −∞.

Similarly, one shows m−
γ (x) = (T (γ))−1 + o(1), x→∞, for γ in the open upper half plane.

Suppose that γ0, =γ0 > 0, is not a pole of T , so 1
T (γ0)

6= 0. Then f+
γ0

and f−γ0 are linearly
independent solutions and hence span the solution space, since the Wronskian is non-zero. By
the above result we have

f+
γ0

(x) = eiγ0xm+
γ0

(x) =
eiγ0x

T (γ0)
+ o(e−x=γ0), x→ −∞ =⇒ f+

γ0
/∈ L2(R)

Similarly, f−γ0 6∈ L2(R), and since f+
γ0

and f−γ0 span the solution space, there is no square
integrable solution, hence γ2

0 is not an eigenvalue of the corresponding Schrödinger operator.

Assume next that T−1 has a zero at γ0 with =γ0 > 0, so that f−γ0 is a multiple of f+
γ0

. By
Theorem 4.1.2 it follows that f+

γ0
, respectively f−γ0 , is a square integrable function for x→∞,

respectively for x→ −∞. Since f−γ0 is a multiple of f+
γ0

, it follows that f+
γ0
∈ L2(R). Theorem

4.1.2 then also gives
df+

γ0

dx
=

df−γ0

dx
∈ L2(R), and since (f±γ0)

′′(x) = −γ2
0f

±
γ0

(x)+q(x)f±γ0(x) ∈ L
2(R)

since we assume q ∈ L∞(R). This then gives that the eigenfunction is actually in the domain
W 2(R). Hence f+

γ0
is an eigenfunction for the corresponding Schrödinger equation for the

eigenvalue γ2
0 . Since the Schrödinger operator is self-adjoint by Corollary 2.2.6, we have

γ2
0 ∈ R and so γ0 ∈ iR>0.

So the poles of T are on the positive imaginary axis, and such a point, say ip, p > 0,
corresponds to an eigenvalue −p2 of the corresponding Schrödinger operator. Since q ∈ L∞(R)
we have that the spectrum is contained in [−‖q‖∞,∞), and by Theorems 2.3.4 and 2.3.2 its
essential spectrum is [0,∞). By Theorem 6.5.5 it follows that the intersection of the spectrum
with [−‖q‖∞, 0) can only have a finite number of points which all correspond to the point
spectrum.

So we can label the zeros of the Wronskian on the positive imaginary axis as ipn, pn >
0, n ∈ {1, 2, · · · , N}, and then fn(x) = f+

ipn
(x) is a square integrable eigenfunction of the

Schrödinger operator. We put

1

ρn
=

∫
R
|fn(x)|2 dx, ‖fn‖ =

1
√
ρn
.

It remains to show that the residue of T at ipn is expressible in terms of ρn. Start with

2iγ
(
T (γ)

)−1
= W (f+

γ , f
−
γ ), which is an equality for analytic functions in the open upper half

plane. Differentiating with respect to γ gives

2i

T (γ)
+ 2iγ

dT−1

dγ
(γ) = W (

∂f+
γ

∂γ
, f−γ )(x) +W (f+

γ ,
∂f−γ
∂γ

)(x),
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where we have emphasized the x-dependence in the Wronskian. In particular, for γ = γ0 a
pole of T , we get

2iγ0
dT−1

dγ
(γ0) = W (

∂f+
γ

∂γ
|γ=γ0 , f−γ0)(x) +W (f+

γ0
,
∂f−γ
∂γ

|γ=γ0)(x).

Since f+
γ is a solution to −f ′′ + q f = γ2 f and

∂f−γ
∂γ

is a solution to −f ′′ + q f = γ2 f + 2γ f−γ ,
cf. Proposition 4.1.10, we find, cf. the proof of Proposition 4.2.1,

d

dx

(
W (f+

γ ,
∂f−γ
∂γ

)
)
(x) = f+

γ (x)
d2

dx2

∂f−γ
∂γ

(x)−
d2f+

γ

dx2
(x)

∂f−γ
∂γ

(x) = 2γf+
γ (x) f−γ (x),

so that

2γ

∫ x

a

f+
γ (y) f−γ (y) dy = W (f+

γ ,
∂f−γ
∂γ

)(x)−W (f+
γ ,
∂f−γ
∂γ

)(a)

and this we want to consider more closely for γ = γ0 a pole of the transmission coefficient T .
Since we already have established that poles lie on the positive imaginary axis we can take
γ0 = ipn, pn > 0. Then fn(x) = f+

ipn
(x) is a multiple of f−ipn

(x) and Theorem 4.1.2 implies
that fn(x) and its derivate f ′n(x) behave like epnx as x → −∞. Combined with Proposition
4.1.10, we see that we can take the limit a→ −∞ to get

2ipn

∫ x

−∞
fn(y) f

−
ipn

(y) dy = W (f+
ipn
,
∂f−γ
∂γ

|γ=−ipn)(x).

In a similar way we get

2ipn

∫ ∞

x

fn(y) f
−
ipn

(y) dy = W (
∂f+

γ

∂γ
|γ=ipn , f

−
ipn

)(x)

so that we obtain

−2 pn
dT−1

dγ
(ipn) = 2ipn

∫
R
fn(y) f

−
ipn

(y) dy.

Since f±ipn
are real-valued, cf. remark following Theorem 4.1.2, non-zero and multiples of each

other we see that f−ipn
= Cnf

+
ipn

(x) = Cnfn(x) for some real non-zero constant Cn, so that

dT−1

dγ
(ipn) =

Cn
i

∫
R
|fn(y)|2 dy 6= 0.

Note that Cn = limx→∞Cne
pnxf+

ipn
(x) = limx→∞ epnxf−ipn

. It follows that the zero of 1
T

at ipn

is simple, so that T has a simple pole at ipn with residue i
Cn

(∫
R |fn(y)|

2 dy
)−1

.

Exercise 4.2.8. The statement on the simplicity of the eigenvalues in Theorem 4.2.7 has not
been proved. Show this.
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Definition 4.2.9. Assume the conditions as in Theorem 4.2.7, then the transmission coeffi-
cient T , the reflection coefficient R together with the poles on the positive imaginary axis with
the corresponding square norms; {(pn, ρn) | pn > 0, 1 ≤ n ≤ N} constitute the scattering data.

Given the potential q, the direct scattering problem constitutes of determining T , R and
{(pn, ρn)}.

Remark 4.2.10. It can be shown that it suffices to take the reflection coefficient R to-
gether with {(pn, ρn) | pn > 0, 1 ≤ n ≤ N} as the scattering data, since the transmis-
sion coefficient can be completely recovered from this. Indeed, the norm of T follows from
|T (γ)| =

√
1− |R(γ)|2, see 4.2.1, and the transmission coefficient can be completely recon-

structed using complex function techniques and Hardy spaces.

Exercise 4.2.11. Work out the scattering data for the cosh−2-potential using the results as
in Section 2.5.2. What can you say about the scattering data for the other two examples in
Sections 2.5.1, 2.5.3?

4.3 Fourier transform properties of the Jost solutions

We assume that the potential q satisfies the conditions of Theorem 4.1.5. By Corollary 4.1.7
we see that γ 7→ m+

γ (x) − 1 is in the Hardy class H+
2 for each x ∈ R, see Section 6.3. So by

the Paley-Wiener Theorem 6.3.2 it is the inverse Fourier transform of an L2(0,∞) function;

m+
γ (x) = 1 +

∫ ∞

0

B(x, y) e2iγy dy,

where we have switched to 2y instead of y in order to have nicer looking formulas in the sequel.
Note that for the Jost solution we have

f+
γ (x) = eiγx +

∫ ∞

x

A(x, y) eiγy dy, A(x, y) =
1

2
B(x,

1

2
(y − x)).

So the Paley-Wiener Theorem 6.3.2 gives B(x, ·) ∈ L2(0,∞) for each x ∈ R, but the kernel B
satisfies many more properties. Let us consider the kernel B more closely. Recall the proof of
Theorem 4.1.2 and (4.1.4), and write

m+
γ (x)− 1 =

∫ ∞

x

1

2iγ
(e2iγ(y−x) − 1)q(y) dy +

∞∑
n=2

mn(x; γ),

where we have emphasized mn(x; γ) = mn(x) to express the dependence of mn on γ. Then
y 7→ 1

2
B(x, 1

2
y) is the inverse Fourier transform of m+

γ (x) − 1 with respect to γ. By the
estimates in the proof of Theorem 4.1.2 it follows that each mn(x; γ), n ≥ 2, is of order
O( 1

|γ|2 ), so we see that
∑∞

n mn(x; γ) is in L1(R) as function of γ, so its Fourier transform,
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say 1
2
B1(x,

1
2
y), is in C0(R) by the Riemann-Lebesgue Lemma. So it remains to take the

Fourier transform of the integral. First recall, cf. proof of Theorem 4.1.5, that the integrand
is majorized by (y − x)|q(y)| which is assumed to be integrable on [x,∞) and the integral is
of order O( 1

|γ|), so that it is in L2(R) with respect to γ. Write∫ ∞

x

1

2iγ
(e2iγ(y−x) − 1)q(y) dy = − 1

2iγ
(e2iγ(y−x) − 1)w(y)

∣∣∣∞
y=x

+

∫ ∞

x

w(y) e2iγ(y−x) dy

=

∫ ∞

0

w(x+ y) e2iγy dy =
1

2

∫ ∞

0

w(x+
1

2
y) eiγy dy

where we put w(x) =
∫∞
x
q(y) dy, so that limx→∞w(x) = 0. So we have written the integral as

the inverse Fourier transform of 1
2
H(y)w(x+ 1

2
y), where H is the Heaviside function H(x) = 1

for x ≥ 0 and H(x) = 0 for x < 0. So we obtain

B(x, y) = H(y)w(x+ y) +B1(x, y), B1(x, ·) ∈ C0(R).

In particular, B(x, 0) = w(x) =
∫∞
x
q(t) dt.

Since m+
γ (x) is a solution to m′′ + 2iγ m′ = qm, we see that m+

γ (x) − 1 is a solution to

m′′+2iγ m′ = qm+ q. Since limx→∞m+
γ (x)−1 = 0 and limx→∞

dm+
γ

dx
(x) = 0, we can integrate

this over the interval [x,∞) to find the integral equation for m+
γ ;

−m′(x)− 2iγm(x) =

∫ ∞

x

q(y)m(y) dy +

∫ ∞

x

q(y) dy.

Theorem 4.3.1. Assume q satisfies the conditions of Theorem 4.1.5. The integral equation

B(x, y) =

∫ ∞

x+y

q(t) dt+

∫ y

0

∫ ∞

x+y−z
q(t)B(t, z) dt dz, y ≥ 0,

has a unique real-valued solution B(x, y) satisfying

|B(x, y)| ≤
∫ ∞

x+y

|q(t)| dt exp
(∫ ∞

x

(t− x) |q(t)| dt
)
.

So in particular, B(x, ·) ∈ L∞(0,∞) ∩ L1(0,∞) ⊂ Lp(0,∞), 1 ≤ p ≤ ∞, with

‖B(x, ·)‖∞ ≤
∫ ∞

x

|q(t)| dt exp
(∫ ∞

x

(t− x) |q(t)| dt
)
,

‖B(x, ·)‖1 ≤
∫ ∞

x

(t− x)|q(t)| dt exp
(∫ ∞

x

(t− x) |q(t)| dt
)
.

Moreover, B is a solution to

∂

∂x

(
By(x, y)−Bx(x, y)

)
= q(x)B(x, y)

with boundary conditions B(x, 0) =
∫∞
x
q(t) dt and limx→∞ ‖B(x, ·)‖∞ = 0.

Moreover, defining m(x; γ) = 1+
∫∞

0
B(x, y) e2iγy dy, then the function e−iγxm(x; γ) is the

Jost solution f+
γ for the corresponding Schrödinger operator.
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The partial differential equation is a hyperbolic boundary value problem known as a Gour-
sat partial differential equation.

Proof. We solve the integral equation by an iteration as before. Put B(x, y) =
∑∞

n=0Kn(x, y)
with Kn(x, y) defined recursively

K0(x, y) =

∫ ∞

x+y

q(t) dt, Kn+1(x, y) =

∫ y

0

∫ ∞

x+y−z
q(t)Kn(t, z) dt dz.

It is then clear that B(x, y) solves the integral equation provided the series converges. We
claim that

|Kn(x, y)| ≤
(
R(x)

)n
n!

S(x+y), R(x) =

∫ ∞

x

(t−x)|q(t)| dt, S(x) =

∫ ∞

x

|q(t)| dt. (4.3.1)

Note that
∫∞

0
S(x + y) dy = R(x). Let us first assume the claim is true. Then the series

converges uniformly on compact sets in R2 and the required estimate follows. It is then also
clear that Kn(x, y) ∈ R for all n since q is real-valued, so that B is real-valued. We leave
uniqueness as an exercise, cf. the uniqueness proof in the proof of Theorem 4.1.2.

Observe that S(x+ y) ≤ S(x) for y ≥ 0, so that estimate on the L∞(0,∞)-norm of B(x, ·)
follows immediately, and this estimate also gives limx→∞ ‖B(x, ·)‖∞ = 0, since S(x) → 0 as
x→∞. For the L1(0,∞)-norm we calculate∫ ∞

0

|B(x, y)| dy ≤ exp
(
R(x)

) ∫ ∞

0

S(x+ y) dy = exp
(
R(x)

)
R(x)

Differentiating with respect to x and y gives

∂B

∂x
(x, y) = −q(x+ y) +−

∫ y

0

q(x+ y − z)B(x+ y − z, z) dz,

∂B

∂y
(x, y) = −q(x+ y) +

∫ ∞

x

q(t)B(t, y) dt−
∫ y

0

q(x+ y − z)B(x+ y − z, z) dz.

Here we use Lebesgue’s Differentiation Theorem 6.1.4, so the resulting identities hold almost
everywhere. Unless we impose differentiability conditions on q, we cannot state anything
about the higher order partial derivatives, but Bx(x, y)−By(x, y) =

∫∞
x
q(t)B(t, y) dt can be

differentiated with respect to x, and this gives the required partial differential equation. We
also obtain ∣∣∂B

∂x
(x, y) + q(x+ y)

∣∣ ≤ ∫ y

0

|q(x+ y − z)B(x+ y − z, z)| dz,

≤
∫ y

0

|q(x+ y − z)| exp(R(x+ y − z))S(x+ y) dz

≤S(x+ y) exp(R(x))

∫ x+y

x

|q(t)| dt ≤ S(x+ y) exp(R(x))S(x)

(4.3.2)
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since R is decreasing. The one but last estimate can also be used to observe that∣∣∂B
∂x

(x, y) + q(x+ y)
∣∣ ≤ S(x) exp(R(x))

∫ x+y

x

|q(t)| dt→ 0, y ↓ 0,

since S(x + y) ≤ S(x) and q is integrable. This gives the other boundary condition for the
partial differential equation. Similarly,∣∣∂B

∂y
(x, y) + q(x+ y)

∣∣ ≤ ∫ y

0

|q(x+ y − z)B(x+ y − z, z)| dz +

∫ ∞

x

|q(t)B(t, y)| dt,

≤
∫ y

0

|q(x+ y − z)| exp(R(x+ y − z))S(x+ y) dz +

∫ ∞

x

|q(t)| exp(R(t))S(t+ y) dt

≤ S(x+ y) exp(R(x))

∫ x+y

x

|q(t)| dt + S(x+ y) exp(R(x))

∫ ∞

x

|q(t)| dt

≤ 2S(x+ y) exp(R(x))S(x).

Define n(x; γ) =
∫∞

0
B(x, y) e2iγy dy, then by (4.3.2) we find |∂B

∂x
(x, y)| ≤ |q(x+y)|+S(x+

y)S(x) exp(R(x)) and the right hand side is integrable with respect to y ∈ [0,∞). So we can
differentiate with respect to x in the integrand to get

n′(x, γ) =

∫ ∞

0

Bx(x, y) e
2iγy dy =

∫ ∞

0

(
Bx(x, y)−By(x, y)

)
e2iγy dy +

∫ ∞

0

By(x, y) e
2iγy dy

= −
∫ ∞

0

∫ ∞

x

q(t)B(t, y) dt e2iγy dy +B(x, y)e2iγy
∣∣∣∞
y=0

− 2iγ

∫ ∞

0

B(x, y) e2iγy dy

= −
∫ ∞

0

∫ ∞

x

q(t)B(t, y) dt e2iγy dy −B(x, 0)− 2iγ

∫ ∞

0

B(x, y) e2iγy dy

=

∫ ∞

x

q(t)

∫ ∞

0

B(t, y) e2iγy dydt−B(x, 0)− 2iγ

∫ ∞

0

B(x, y) e2iγy dy

= −
∫ ∞

x

q(t)n(x; γ) dt−
∫ ∞

x

q(t) dt− 2iγ n(x; γ)

since limy→∞B(x, y) = 0 by limy→∞ S(x+ y) = 0, and where Fubini’s theorem is applied and
B(x, 0) =

∫∞
x
q(t) dt. So n(x; γ) satisfies the integrated version of the differential equation

m′′ + 2iγm′ = qm + q. Since |n(x; γ)| ≤ ‖B(x, ·)‖1 → 0 as x → ∞, it follows that n(γ;x) =
m+
γ (x)− 1 and the result follows.
It remains to prove the estimate in (4.3.1). This is proved by induction on n. The case

n = 0 is trivially satisfied by definition of S(x+ y). For the induction step, we obtain by the
induction hypothesis and the monotonicity of S the estimate

|Kn+1(x, y)| ≤
∫ y

0

∫ ∞

x+y−z
|q(t)|S(t+ z)

(R(t))n

n!
dt dz

≤ S(x+ y)

∫ y

0

∫ ∞

x+y−z
|q(t)| (R(t))n

n!
dt dz
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and it remains to estimate the double integral. Interchanging the order of integration, the
integral equals∫ x+y

x

|q(t)| (R(t))n

n!

∫ y

x+y−t
dz dt+

∫ ∞

x+y

|q(t)| (R(t))n

n!

∫ y

0

dz dt

=

∫ x+y

x

(t− x)|q(t)| (R(t))n

n!
dt+

∫ ∞

x+y

y|q(t)| (R(t))n

n!
dt

≤
∫ ∞

x

(t− x)|q(t)| (R(t))n

n!
dt =

∫ ∞

x

(t− x)|q(t)| 1

n!

(∫ ∞

t

(u− t)|q(u)| du
)n

dt

≤
∫ ∞

x

(t− x)|q(t)| 1

n!

(∫ ∞

t

(u− x)|q(u)| du
)n

dt =
(R(x))n+1

(n+ 1)!

using y ≤ t − x in the first inequality and u − t ≤ u − x for x ≥ t in the second inequality.
This proves the induction step.

Exercise 4.3.2. Work out the kernel B for the cosh−2-potential using the results as in Section
2.5.2, see also Section 4.5. What can you say about the kernel B for the other two examples
in Sections 2.5.1, 2.5.3?

Note that in the above considerations for the Jost solution γ ∈ R, but it is possible to
extend the results to γ in the closed upper half plane, =γ ≥ 0.

Proposition 4.3.3. Assume that q satisfies the assumptions of Theorem 4.1.5. The relations

m+
γ (x) = 1 +

∫ ∞

0

B(x, y) e2iγy dy, f+
γ (x) = eiγx +

∫ ∞

x

A(x, y) eiγy dy

remain valid for =γ ≥ 0.

Proof. Fix x ∈ R and consider F (γ) = m+
γ (x)−1−

∫∞
0
B(x, y)e2iγy dy, then we know that F is

analytic in the open upper half plane =γ > 0 and continuous on =γ ≥ 0. Moreover, F (γ) = 0

for γ ∈ R. We now use for fixed γ in the open upperhalf plane F (γ) = 1
2πi

∫
C
F (z)
z−γ dz for a

suitable contour C in the open upper half plane. We take C to be a semicircle of sufficiently
large radius R just above the real axis at =z = ε < =γ. This gives the estimate

|F (γ)| ≤ 1

2π

∫
|z|=R,=z>0

F (z)

z − γ
dz +

1

2π

∫ R+iε

−R+iε

F (z)

z − γ
dz

≤ 1

2π

R

dist(γ, |z| = R)

∫ π

0

|F (Reiθ)| dθ +
1

2π

∫ R

−R

F (t+ iε)

t+ iε− γ
dt.

For γ in the open upper half plane we can take ε ↓ 0 in the second integral by dominated
convergence, which then gives zero. The factor in front of the first integral is bounded as
R→∞ for γ fixed in the upper half plane, so the result follows from the claim

lim
R→∞

∫ π

0

|F (Reiθ)| dθ = 0.
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To prove this first observe that
∫ π

0
|m+

Reiθ − 1| dθ → 0 as R → 0, since the integrand is O( 1
R
)

by Theorem 4.1.2. So it remains to estimate∫ π

0

∫ ∞

0

|B(x, y)e2iRe
iθy| dy dθ =

∫ π

0

∫ ∞

0

|B(x, y)|e−2Ry sin θ dy dθ

=

(∫ ε(R)

0

+

∫ π−ε(R)

ε(R)

+

∫ π

π−ε(R)

)∫ ∞

0

|B(x, y)|e−2Ry sin θ dy dθ,

where ε(R) ∈ (0, 1
2
π) is choosen such that sin θ ≥ 1√

R
for all θ ∈ (ε(R), π − ε(R)). We have

sin ε(R) = 1√
R

and ε(R) ∼ 1√
R

as R→∞. Now the integral can be estimated by

2ε(R)

∫ ∞

0

|B(x, y)| dy + π

∫ ∞

0

e−2y
√
R|B(x, y)| dy = 2ε(R)‖B(x, ·)‖1 +

1

4
√
R
‖B(x, ·)‖2 → 0

as R→ 0.

Exercise 4.3.4. Work out the proof of the second statement of Proposition 4.3.3.

.

4.4 Gelfand-Levitan-Marchenko integral equation

In this section we consider the inverse scattering problem, namely how to construct the poten-
tial from the scattering data. From Theorem 4.3.1 we see that the potential q can be recovered
from the kernel B for the Jost solution f+

γ . So if we can characterize the kernel B in terms
of scattering data we are done, and this is described by the Gelfand5-Levitan6-Marchenko7

integral equation. To see how this comes about we first start with a formal calculation. We
assume that T has no poles in the open upper half plane, i.e. the corresponding Schrödinger
operator has no discrete spectrum. Assume that the reflection coefficient R(γ) has a Fourier
transform R(γ) =

∫
R r(y)e

iγy dy, where we absorb the factor 1√
2π

in r, then using the results
in Section 4.3 give

T (γ) f−γ (x) = f+
−γ(x) +R(γ) f+

γ (x)

= e−iγx +

∫ ∞

x

A(x, y)e−iγy dy +

∫
R
r(y)eiγ(x+y) dy +

∫
R
r(z)eiγz dz

∫ ∞

x

A(x, y)e−iγy dy

and this is rewritten as∫ −x

−∞
A(x,−y)eiγy dy +

∫
R
r(y − x)eiγy dy +

∫
R

(∫ ∞

x

A(x, z) r(y − z) dz
)
eiγydy

= T (γ) f−γ (x)− e−iγx.

5Israil Moiseevic Gelfand (2 September 1913 — ), Russian mathematician, one of the greatest mathemati-
cians of the 20th century.

6Boris Levitan (1915 — 4 April 2004), Russian mathematician.
7Vladimir Aleksandrovich Marchenko, (7 July 1922 — ), Ukrainian mathematician.
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Now as in Section 4.3 we have that m−
γ (x) − 1 is in the Hardy class H+

2 , so we similarly get
f−γ (x) = e−iγx +

∫∞
−xA−(x, y)eiγy dy, hence the right hand side equals

T (γ) f−γ (x)− e−iγx =
(
T (γ)− 1

)
e−iγx + T (γ)

(
m−
γ (x)− 1

)
e−iγx.

Now if γ 7→ T (γ)− 1 and γ 7→ T (γ)
(
m−
γ (x)− 1

)
are of Hardy class H+

2 , which can be shown
by using that γ 7→ m−

γ (x)−1 is in H+
2 and by refining the estimates on T in Proposition 4.2.4,

it follows from the Paley-Wiener Theorem 6.3.2 and shifting by x that Fourier transform of
the right hand side is supported on [−x,∞). But the left hand side is a Fourier transform, so
that

A(x,−y) + r(y − x) +

∫ ∞

x

A(x, z) r(y − z) dz = 0, y < −x. (4.4.1)

So assuming the reflection coefficient, hence its Fourier transform, is known the kernel A,
satisfies (4.4.1). Assuming that the integral equation can be uniquely solved, the potential q
then follows from B by a formula as in Theorem 4.3.1. The integral equation (4.4.1) is known
as the Gelfand-Levitan-Marchenko equation. We see that the Gelfand-Levitan-Marchenko
equation is essentially expressing a fact on the Fourier transform of the fundamental relation
T (γ) f−γ (x) = f+

−γ(x) +R(γ) f+
γ (x) between Jost solutions.

In case the Schrödinger operator has point spectrum, the transmission coefficient has
poles. In this case the Fourier transform is not identically zero for y < −x, but there are
non-zero contributions. The idea is to find these non-zero contributions by shifting the path
in
∫

R T (γ)f−γ (x)e−iγx dγ to =γ is a large enough constant, and by picking residues at ipn,
1 ≤ n ≤ N , with notation and residues as in Theorem 4.2.7. This idea shows that the above
approach can be adapted by adding a finite sum to the kernel r in (4.4.1).

In order to make the above approach rigorous we need to investigate the reflection co-
efficient more closely. Instead of dealing with the kernel A we deal with the kernel B as
considered in Theorem 4.3.1.

Proposition 4.4.1. Assume the potential q satisfies the conditions of Theorem 4.1.2, then
the reflection coefficient R ∈ L2(R), so that its inverse Fourier transform, up to scaling and
linear transformation of the argument, Kc : y 7→ 1

π

∫
RR(γ)e2iγy dy is defined as an element in

L2(R).

So Kc(x) = 1
π

∫
RR(γ) e2iγx dγ is considered as an element of L2(R). Since R(γ) = R(−γ)

we see that Kc(x) = 1
π

∫
RR(−γ) e−2iγx dγ = Kc(x) or Kc is real-valued.

Proof. First observe that the reflection coefficient is bounded on R by (4.2.1). From the proof
of Proposition 4.2.4 it follows that 1

T (γ)
− 1 = O( 1

|γ|) as γ → ±∞. So T (γ) = 1 +O( 1
|γ|) and

so is |R(γ)| =
√

1− |T (γ)|2 = O( 1
|γ|). So |R(γ)|2 = O( 1

|γ|2 ), and R ∈ L2(R).

Assuming the conditions of Theorem 4.2.7, we can consider the discrete spectrum of the
corresponding Schrödinger operator. With the notation of Theorem 4.2.7 we define

Kd(x) = 2
N∑
n=1

ρne
−2pnx
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and Kd(x) = 0 if the transmission coefficient has no poles, i.e. the Schrödinger operator has no
discrete eigenvalues. So we let Kc, respectively Kd, correspond to the continuous, respectively
discrete, spectrum of the Schrödinger operator. Now define, K = Kc +Kd as the sum of two
square integrable functions on the interval [a,∞) for any fixed a ∈ R.

Theorem 4.4.2. Assume the potential q satisfies the conditions of Theorem 4.2.7. Then the
kernel B satisfies the integral equation

K(x+ y) +

∫ ∞

0

B(x, z)K(x+ y + z) dz +B(x, y) = 0,

for allmost all y ≥ 0 which for each fixed x ∈ R is an equation that holds for B(x, ·) ∈ L2(0,∞).
Moreover, the integral equation has a unique solution B(x, ·) ∈ L2(0,∞).

The integral equation is the Gelfand-Levitan-Marchenko equation, and we see that the
kernel B, hence by Theorem 4.3.1 the potential q, is completely determined by the scattering
data. So in this way the inverse scattering problem is solved. In particular, the transmission
coefficient T is not needed, cf. Remark 4.2.10, and hence is determined by the remainder of
the scattering data.

Proof. So consider T (γ) f−γ (x) = f+
−γ(x) +R(γ) f+

γ (x) and rewrite this in terms of m±
±γ(x) to

find for γ ∈ R\{0}
T (γ)m−

γ (x) = m+
−γ(x) + R(γ) e2iγxm+

γ (x)

= 1 +

∫ ∞

0

B(x, y) e−2iγy dy +R(γ)e2iγx
(
1 +

∫ ∞

0

B(x, y) e2iγy dy
)

=⇒ T (γ)m−
γ (x)− 1 =

∫ ∞

0

B(x, y) e−2iγy dy +R(γ)e2iγx +R(γ)e2iγx
∫ ∞

0

B(x, y) e2iγy dy

using Theorem 4.3.1. As functions of γ, the first term on the right hand side is an element of
L2(R) by Theorem 4.3.1, and similarly for the last term on the right hand side using that R(γ)
is bounded by 1, see (4.2.1). Proposition 4.4.1 gives that the middle term on the right hand
side is an element of L2(R). So we see that the function on the left hand side is an element of
L2(R), which we can also obtain directly from T (γ)m−

γ (x)−1 = T (γ)
(
m−
γ (x)−1

)
+
(
T (γ)−1

)
.

By Corollary 4.1.7 and the boundedness of T , the first term is even in the Hardy class H+
2

and the second term is in L2(R) by the estimates in the proof of Proposition 4.2.4.
So we take the inverse Fourier transform of this identity for elements of L2(R). Since

we have switched to other arguments we use the Fourier transform in the following form, cf.
Section 6.3;

g(λ) =

∫
R
f(y) e−2iλy dy, f(y) = (Gg)(y) =

1

π

∫
R
g(λ) e2iλy dλ,

where G is a bounded invertible operator on L2(R). So applying G we get an identity in L2(R)
for each fixed x;

G
(
γ 7→ T (γ)m−

γ (x)− 1
)

=B(x, ·) + G
(
γ 7→ R(γ)e2iγx

)
+ G

(
γ 7→ R(γ)e2iγx

∫ ∞

0

B(x, z) e2iγz dz
)
.
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It remains to calculate the three G-transforms explicitly. Since the identity is in L2(R) we
have to employ approximations.

We first calculate G
(
γ 7→ R(γ)e2iγx

)
. Put Rε(γ) = exp(−εγ2)R(γ), so that Rε ∈ L1(R) ∩

L2(R), and note that∫
R
|Rε(γ)e

2iγx −R(γ)e2iγx|2 dγ =

∫
R
|R(γ)|2|1− e−εγ

2|2 dγ → 0, ε ↓ 0,

by the Dominated Convergence Theorem 6.1.3. By continuity of G on L2(R) we then have

lim
ε↓0
G
(
γ 7→ Rε(γ)e

2iγx
)

= G
(
γ 7→ R(γ)e2iγx

)
in L2(R).

Now

G
(
γ 7→ Rε(γ)e

2iγx
)
(y) =

1

π

∫
R
R(γ) e−εγ

2

e2iγ(x+y) dy = G
(
γ 7→ Rε(γ)

)
(x+ y)

and this tends to y 7→ Kc(x+ y) as an element of L2(R) as ε ↓ 0.
Similarly we consider the other G transform on the right hand side;

1

π

∫
R

(
Rε(γ)e

2iγx

∫ ∞

0

B(x, z)e2iγz dz
)
e2iγy dγ =

∫ ∞

0

B(x, z)
( 1

π

∫
R
Rε(γ)e

2iγ(x+y+z) dγ
)
dz,

since the integrals converge absolutely by |Rε(γ)| ≤ e−εγ
2

and B(x, ·) ∈ L1(R) by Theorem
4.3.1. The inner integral converges to Kc(x + y + z) as ε ↓ 0 in L2(R), and since B(x, ·) ∈
L2(0,∞) by Theorem 4.3.1 the Cauchy-Schwarz inequality (6.1.1) for L2(0,∞) shows that the
integral converges to

∫∞
0
B(x, z)Kc(x+ y + z) dz as ε ↓ 0.

It remains to calculate the G-transform of the left hand side, and this is where the poles of
the transmission coefficient play a role. By Theorem 4.2.7 the function γ 7→ T (γ)m−

γ (x) − 1
is meromorphic in =γ > 0 for fixed x and continuous in =γ ≥ 0. Moreover, it has simple
poles at ipn, 1 ≤ n ≤ N , so we want to employ Cauchy’s Theorem. We first multiply by

1
1−iεγ , ε > 0, which has a pole at γ = 1/iε = −i/ε in the open lower half plane. (Note that

exp(−εγ2) is not a good modification, because we want to consider the function in the upper
half plane.) Then, for ε > 0,

Iε(x, y) =
1

π

∫
R

1

1− iεγ
(T (γ)m−

γ (x)− 1)e2iγy dγ

has an integrable integrand meromorphic in =γ > 0 and continuous in =γ ≥ 0. We only
consider this integral for y ≥ 0. We claim that

Iε(x, y) = lim
M→∞

1

π

∫
CM

1

1− iεγ
(T (γ)m−

γ (x)− 1)e2iγy dγ,

where CM is the closed contour in the complex plane consisting of the interval [−M,M ] on
the real axis and the half circle z = Meiθ, 0 ≤ θ ≤ π. This is a consequence of

T (γ)m−
γ (x)− 1 = O(

1

|γ|
), =γ ≥ 0,
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so that the integrand is O( 1
|γ|2 ) and the integrand over the half circle tends to zero.

Now the contour integral can be evaluated, cf. proof of Proposition 4.3.3, by Cauchy’s
Theorem;

Iε(x, y) =
2πi

π

N∑
n=1

Resγ=ipn

1

1− iεγ
(T (γ)m−

γ (x)− 1)e2iγy

= 2i
N∑
n=1

1

1 + εpn

(
Resγ=ipnT (γ)

)
m−
ipn

(x)e−2pny.

Since f−ipn
(x) = Cn f

+
ipn

(x) = Cn fn(x), cf. proof of Theorem 4.2.7, we find m−
ipn

(x) =
e−2pnxCnm

+
ipn

(x). With the value of the residue in Theorem 4.2.7, we find

lim
ε↓0
Iε(x, y) = −2

N∑
n=1

1

‖fn‖2
m+
ipn

(x)e−2pn(x+y)

= −2
N∑
n=1

1

‖fn‖2
e−2pn(x+y) − 2

N∑
n=1

1

‖fn‖2

∫ ∞

0

B(x, z)e−2pnz dz e−2pn(x+y)

= −Kd(x+ y)−
∫ ∞

0

B(x, z)Kd(x+ y + z) dz.

Combining the ingredients gives the required Gelfand-Levitan-Marchenko integral equation
for B.

In order to prove the uniqueness of the solution, we consider the operator f 7→ K(x)f with

K(x)f(y) =

∫ ∞

0

K(x+ y + z) f(z) dz,

then K(x) : L2(0,∞) → L2(0,∞) is a bounded operator as we show below. For uniqueness we
need to show that K(x)f + f = 0 only has the trivial solution f = 0 in L2(R).

First, to show that K(x) is bounded on L2(0,∞) we consider for f, g ∈ L2(0,∞)∩L1(0,∞),

〈K(x)f, g〉 =

∫ ∞

0

(∫ ∞

0

K(x+ y + z) f(z) dz
)
g(y) dy

= 2
N∑
n=1

∫ ∞

0

∫ ∞

0

ρne
−2pn(x+y+z)f(z) g(y) dz dy

+
1

π

∫ ∞

0

∫ ∞

0

∫
R
f(z)g(y)R(γ)e2iγ(x+y+z) dγ dy dz

=
N∑
n=1

〈f, en〉〈en, g〉+ 2

∫
R

(
F−1f

)
(2γ)

(
F−1ḡ

)
(2γ)R(γ) e2iγx dγ

=
N∑
n=1

〈f, en〉〈en, g〉+

∫
R

(
F−1f

)
(γ)
(
F−1ḡ

)
(γ)R(

1

2
γ) eiγx dγ
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where en(y) =
√

2ρne
−2pny−pnx is an element of L2(0,∞) and 〈·, ·〉 denotes the inner product of

the Hilbert space L2(0,∞), which we consider as a subspace of L2(R) in the obvious way. Note
that interchanging of the integrals is justified because all integrals converge for f, g ∈ L1(0,∞).
Next we estimate the right hand side in terms of the L2(0,∞)-norm of g by

‖g‖L2(0,∞) ‖f‖L2(0,∞)

N∑
n=1

‖en‖2
L2(0,∞) + ‖F−1f‖L2(R)‖F−1ḡ‖L2(R)

≤ ‖g‖L2(0,∞) ‖f‖L2(0,∞)

( N∑
n=1

‖en‖2
L2(0,∞) + 1

)
,

since |R(γ) e2iγx| ≤ 1 and, recall L2(0,∞) ⊂ L2(R), the Fourier transform being an isometry.
So K(x) is a bounded operator, and the above expression for 〈K(x)f, g〉 remains valid for
arbitrary f, g ∈ L2(0,∞).

So for a real-valued f ∈ L2(0,∞)

〈f +K(x)f, f〉 = ‖f‖2
L2(0,∞) +

∞∑
n=1

|〈f, en〉|2 +

∫
R
|
(
F−1f

)
(γ)|2R(

1

2
γ) eiγx dγ

so for real-valued f ∈ L2(0,∞) with K(x)f + f = 0 we get∫
R
|
(
F−1f

)
(γ)|2 (1 +R(

1

2
γ) eiγx) dγ = −

∞∑
n=1

|〈f, en〉|2 ≤ 0

using ‖f‖2
L2(0,∞) = 2

∫
R |
(
F−1f

)
(γ)|2 dγ. Since f is real-valued, x, γ ∈ R, we have

|
(
F−1f

)
(γ)|2 (1 +R(

1

2
γ) eiγx) = |

(
F−1f

)
(−γ)|2 (1 +R(−1

2
γ) e−iγx)

by (4.2.1), so

2

∫ ∞

0

|
(
F−1f

)
(γ)|2<

(
1 +R(

1

2
γ) eiγx

)
dγ = 2<

∫ ∞

0

|
(
F−1f

)
(γ)|2 (1 +R(

1

2
γ) eiγx) dγ ≤ 0.

Since |R(γ)| ≤ 1 by (4.2.1) it follows that <
(
1 + R(1

2
γ) eiγx

)
≥ 0, so that the integral is

non-negative and hence it has to be zero and since the integrand is non-negative it has to be
zero almost everywhere. Note that a zero of <

(
1 +R(1

2
γ) eiγx

)
can only occur if |R(1

2
γ)| = 1,

its maximal value. The transmission coefficient is zero, T (γ) = 0, by (4.2.1) and hence
f+
−γ(x)+R(γ) f+

γ (x) = 0, or f+
−γ and f+

γ are linearly dependent solutions, i.e. W (f+
γ , f

+
−γ) = 0.

By Proposition 4.2.1 this implies γ = 0. We conclude that F−1f is zero almost everywhere,
hence f is zero almost everywhere, or f = 0 ∈ L2(0,∞).

So any real-valued f ∈ L2(0,∞) satisfying f +K(x)f = 0 equals f = 0 ∈ L2(0,∞). Since
the kernel K is real-valued, for any f ∈ L2(0,∞) with f+K(x)f = 0 we have <f+K(x)<f = 0
and =f +K(x)=f = 0, so then f = 0 ∈ L2(0,∞). This proves uniqueness of the solution.
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Remark 4.4.3. The Gelfand-Levitan-Marchenko integral equation of Theorem 4.4.2 presents
us with an algorithm to reconstruct uniquely the potential q from the scattering data, and ac-
tually we can even do this just knowing the reflection coefficient and the bound states, i.e. the
eigenvalues plus the corresponding norms. This is actually the only part of information related
to the transmission coefficient that is needed, cf. Theorem 4.2.7, and Remark 4.2.10. Note
moreover that, given the scattering data, the Gelfand-Levitan-Marchenko integral equation is
a linear problem for B.

We do not address the characterisation problem, i.e. given a matrix S(γ) as in (4.2.2),
under which conditions on its matrix elements is S(γ) the scattering matrix corresponding to
a potential q? The characterisation problem depends on the class of potentials that is taken
into account. We refer to the paper [3] of Deift and Trubowitz for these results.

Remark 4.4.4. We briefly sketch another approach to recover the potential function from the
scattering data, which is known as the Fokas-Its Riemann-Hilbert approach. We assume that
the transmission coefficient T has no poles in the upper half plane, but the line of reasoning
can be easily adapted to this case. We write

T (γ)eiγxf−γ (x)− eiγxf+
−γ(x) = R(γ)f+

γ (x)eiγx, γ ∈ R.

Note that T (γ)eiγxf−γ (x) is analytic in the open upper half plane =γ > 0 and that eiγxf+
−γ(x)

is analytic in the open lower half plane =γ < 0, and both have continuous extensions to the
real axis. Such a problem is a Riemann-Hilbert type problem, and this was solved by Plemelj
in 1908. Taking into account the behaviour of the functions as γ → ±∞, the Plemelj solution
to such a Riemann-Hilbert problem is given by

eiγxf+
−γ(x) = 1 +

1

2πi

∫
R

R(λ)f+
λ (x)eiλx

λ− γ
dλ.

Relabelling gives an integral equation for the Jost solution;

f+
γ (x) = eiγx +

1

2πi

∫
R

R(λ)f+
λ (x)ei(λ+γ)x

λ+ γ
dλ

and this determines the Jost solution from the scattering data.
Now the Jost solution f+

γ determines the potential q, as can be seen as follows. Write

f+
γ (x) = eiγx+u(x;γ) with u(x; γ) → 0 as x→∞, =γ ≥ 0 and u(x; γ) → 0 as γ → ±∞, =γ ≥ 0.

Then the Schrödinger equation for f+
γ translates into the differential equation −2iγux =

uxx + u2
x − q, which is a first order equation for ux. Because of its behaviour as γ → ±∞ we

expand ux(x; γ) =
∑∞

n=1
vn(x)
(2iγ)n and this gives v1(x) = q(x) and recursively defined vn’s. So in

particular, ux(x; γ) = 1
2iγ
q(x) as γ → ±∞. Moreover, f+

γ (x)e−iγx = eu(x;γ) ∼ 1 + u(x; γ), so
that we formally obtain

q(x) = lim
γ→∞,=γ≥0

2iγ
d

dx

(
f+
γ (x)e−iγx − 1

)
.

So in this way, one can also recover the potential q from the scattering data.
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4.5 Reflectionless potentials

We now consider the situation of a reflectionless potential, R(γ) = 0, γ ∈ R. This is a very
special case, and the Gelfand-Levitan-Marchenko equation essentially is a matrix equation.
Of course, we need to assume that the corresponding Schrödinger equation has at least one
eigenvalue, otherwise the kernel K is identically equal to zero, so that B is identically equal
to zero and hence the potential is trivial, and we get the Schrödinger equation − d2

dx2 .
We first consider the easiest non-trival case, N = 1. So that K(x) = Kd(x) = 2ρe−2px,

ρ = ρ1, p = p1, and the Gelfand-Levitan-Marchenko equation becomes

2ρe−2p(x+y) +

∫ ∞

0

B(x, z)2ρe−2p(x+y+z) dz +B(x, y) = 0, y ≥ 0.

=⇒B(x, y) = −2ρe−2p(x+y) − 2ρe−2p(x+y)

∫ ∞

0

B(x, z)e−2pz dz,

so that the y-dependence of B(x, y) is 2ρe−2py. Substitute B(x, y) = −2ρe−2py w(x), so that

w(x) = e−2xp + e−2pxw(x)

∫ ∞

0

−2ρe−4pz dz = e−2px + w(x)e−2px−ρ
2p

so that w(x) = e−2px/(1 + ρ
2p
e−2px) and we get

B(x, y) =
−2ρe−2p(x+y)

1 + ρ
2p
e−2px

=⇒ B(x, 0) =
−2ρe−2px

1 + ρ
2p
e−2px

.

Deriving this expression and multiplying by −1 gives the potential by Theorem 4.3.1;

q(x) = − 4pρe−2px

(1 + ρ
2p
e−2px)2

=
−2p2

cosh2(px+ 1
2
ln(2p/ρ))

, (4.5.1)

which is, up to a affine scaling of the variable, the potential considered in Section 2.5.2.
So the potential −2p2 cosh−2(px) is reflectionless, and we can ask whether there are more

values for a such that the potential a cosh−2(px) is reflectionless. By Exercise 2.5.6 it suffices
to consider the case p = 1. We can elaborate on the discussion in Section 2.5.2 by observing

f+
γ (x) = 2iγ

(
cosh(x)

)iγ
2F1

 1
2
− iγ +

√
1
4
− a, 1

2
− iγ −

√
1
4
− a

1− iγ
;

1

1 + e2x

 ,

f−γ (x) = 2iγ
(
cosh(x)

)iγ
2F1

 1
2
− iγ +

√
1
4
− a, 1

2
− iγ −

√
1
4
− a

1− iγ
;

e2x

1 + e2x

 ,

f+
−γ(x) = e−ixγ 2F1

 1
2

+
√

1
4
− a, 1

2
−
√

1
4
− a

1 + iγ
;

1

1 + e2x

 ,



78 Chapter 4: Schrödinger operators and scattering data

so f+
γ corresponds to the solution 2F1(a, b; c, z) of the corresponding hypergeometric differential

equation (2.5.1), f−γ corresponds to 2F1(a, b; a + b + 1 − c; 1 − z), and f+
−γ corresponds to

z1−c
2F1(a− c+1, b− c+1; 2− c; z) with the values (a, b, c) given by (1

2
− iγ±

√
1
4
− a, 1− iγ)

as in Section 2.5.2. Note that 1+ a+ b− c = c in this case. So the transmission and reflection
coefficient defined by T (γ)f−γ (x) = f+

−γ(x) + R(γ)f+
γ (x) follow from the relation (2.5.4) for

hypergeometric functions; T (γ) is 1/B and R(γ) equals A/B. Plugging in the values of A and
B from (2.5.4) with the values of (a, b, c) in terms of a and γ gives an explicit expression for
the transmission and reflection coefficient;

T (γ) =
Γ(1

2
− iγ +

√
1
4
− a)Γ(1

2
− iγ −

√
1
4
− a)

Γ(1− iγ)Γ(−iγ)
,

R(γ) = cos
(
π

√
1

4
− a
)
Γ(

1

2
− iγ +

√
1

4
− a)Γ(

1

2
− iγ −

√
1

4
− a)

Γ(iγ)

πΓ(−iγ)
.

So R(γ) = 0 can only occur if the cosine vanishes, so we need π
√

1
4
− a = 1

2
π + lπ, l ∈ Z,

and this implies a = −l(l + 1), and in this case

T (γ) =
Γ(1− iγ + l)Γ(−iγ − l)

Γ(1− iγ)Γ(−iγ)
=

(1− iγ)l
(−iγ − l)l

= (−1)l
(1− iγ)l
(1 + iγ)l

.

So T is rational in γ, and we can read off the poles on the positive imaginary axis. There are
l simple poles at ik, k ∈ {1, · · · , l}.

Proposition 4.5.1. The potential q(x) = −l(l + 1) cosh−2(x) is a reflectionless potential.
The corresponding self-adjoint Schrödinger operator has essential spectrum [0,∞) and discrete
spectrum −l2,−(l − 1)2, · · · ,−1. The eigenfunction for the eigenvalue −k2 is given by

fk(x) = f+
ik(x) =

1

(2 cosh(x))k
2F1

(
k − l, 1 + k + l

1 + k
;

1

1 + e2x

)
with L2(R)-norm given by ‖fk‖2 =

(
l
k

)
1

(k−1)!
.

Note that the 2F1-series in the eigenfunction is a terminating series, since k− l ∈ −N and
(−n)m = 0 for m > n.

Proof. The statements about the spectrum and the precise form of the eigenvalues and eigen-
functions follow from Theorem 4.2.7 and the previous considerations. It remains to calculate
the squared norm, for which we use Theorem 4.2.7. First we calculate

Ck = lim
x→∞

ekxf−ik(x) = lim
x→∞

ekx

(ex + e−x)k
2F1

(
k − l, 1 + k + l

1 + k
;

e2x

1 + e2x

)
= 2F1

(
k − l, 1 + k + l

1 + k
; 1

)
=

(−l)l−k
(1 + k)l−k

= (−1)l−k,
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where we use 2F1(−n, b; c; 1) = (c − b)n/(b)n for n ∈ N, which is known as the Chu-Vander-
monde summation formula. In order to apply Theorem 4.2.7 we also need to calculate the
residue of the transmission coefficient at γ = ik;

Resγ=ikT (γ) = Resγ=ik(−1)l
(1− iγ)l
(1 + iγ)l

= lim
γ→ik

(γ − ik)(−1)l
(1− iγ)l
(1 + iγ)l

=
−i (−1)l(1 + k)l

(−1)k−1(k − 1)! (l − k)!
= i (−1)l−k

1

(k − 1)!

(
l

k

)
,

so that Theorem 4.2.7 gives the required result.

Exercise 4.5.2. Calculate
∫

R |fk(x)|
2 dx directly using the substitution z = 1/(1 + e2x), to

see that this integral equals

1

2

∫ 1

0

| 2F1

(
k − l, l + k + 1

1 + k
; z

)
|2 zk−1(1− z)k−1 dz.

Expand the terminating 2F1-series, and use the beta-integral
∫ 1

0
zα−1(1 − z)β−1 dz = Γ(α)Γ(β

Γ(α+β)
,

to rewrite this as a double series. Use the Saalschütz summation

n∑
r=0

(−n)r(a)r(b)r
r! (c)r(1− n+ a+ b− c)r

=
(c− a)n(c− b)n
(c)n(c− a− b)n

to find the result. Can you also establish directly
∫

R fk(x)fm(x) dx = 0 for m 6= k?

Now that we have established the existence of reflectionless potentials, we can try to solve
the Gelfand-Levitan-Marchenko equation for a reflectionless potential with an arbitrary, but
finite, number of discrete eigenvalues (or bound states). So we have now K(x) = Kc(x) =
2
∑N

n=1 ρne
−2pnx and we have to solve B(x, y) from

2
N∑
n=1

ρne
−2pn(x+y) +

∫ ∞

0

B(x, z) 2
N∑
n=1

ρne
−2pn(x+y+z) dz +B(x, y) = 0,

and this shows that we can expand B(x, y) as a linear combination of e−2pny when considered
as function of y. We put —the form choosen makes the matrix involved of the form I plus a
positive definite matrix—

B(x, y) =
N∑
n=1

√
ρne

−pn(x+2y)wn(x),

and we need to determine wn(x) from the Gelfand-Levitan-Marchenko equation in this case.
Plugging this expression into the integral equation we see that we get an identity, when
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considered as function in y, is a linear combination of e−2pny. Since the pn’s are different, each
coefficient of e−2pny has to be zero. This gives, after dividing by

√
ρne

−pnx,

2
√
ρne

−2pnx +
N∑
m=1

2
√
ρmρnwm(x)e−(pn+pm)x

∫ ∞

0

e−2(pn+pm)t dt+ wn(x) = 0

for n = 1, · · · , N . Put w(x) = (w1(x), · · · , wN(x))t and v(x) = 2(
√
ρ1e

−2p1x, · · · ,√ρne−2pnx)t

we can rewrite this as (I + S(x))w(x) + v(x) = 0, where I is the identity N ×N -matrix and
S(x)nm =

√
ρnρme

−(pn+pm)x/(pn + pm), which is also a symmetric matrix. In order to see that
S(x) is also positive definite we take an arbitrary vector ξ ∈ CN ,

〈S(x)ξ, ξ〉 =
N∑

i,j=1

S(x)ijξjξi =
N∑

i,j=1

∫ ∞

0

√
ρje

−pjxξje
−pjt√ρje−pixξie−pit dt

=

∫ ∞

0

|f(x, t)|2 dt ≥ 0,

with f(x, t) =
∑N

i=1

√
ρiξie

−pi(x+t). It follows that I + S(x) is invertible, as predicted by

Theorem 4.4.2, so that we can solve for w(x) = −
(
I + S(x)

)−1
v(x). So

B(x, y) =
N∑
n=1

wn(x)
√
ρne

−pn(x+2y) = −〈
(
I + S(x)

)−1
v(x),

1

2
v(x+ 2y)〉

=⇒ B(x, 0) = −1

2
〈
(
I + S(x)

)−1
v(x),v(x)〉 = −1

2

N∑
n,m=1

(
I + S(x)

)−1

n,m
vm(x)vn(x)

= 2
N∑

n,m=1

(
I + S(x)

)−1

n,m

d

dx

(
I + S(x)

)
m,n

= 2 tr
((
I + S(x)

)−1 d

dx

(
I + S(x)

))
observing that

d

dx

(
I + S(x)

)
n,m

= −√ρnρme−(pn+pm)x = −1

4
vn(x)vm(x).

In order to rewrite B(x, 0) in an even more compact way, note that for a N × N -matrix
A(x) depending on a variable x, we can calculate

d

dx
det(A(x)) =


a′11(x) a12(x) · · · a1N(x)
a′21(x) a22(x) . . . a2N(x)

...
. . .

...
a′N1(x) aN2(x) · · · aNN(x)

+ · · ·+


a11(x) a12(x) · · · a′1N(x)
a21(x) a22(x) · · · a′2N(x)

...
. . .

...
aN1(x) aN2(x) · · · a′NN(x)


=
∑
j=1

a′1j(x)A1j(x) + · · ·+
∑
j=1

a′Nj(x)ANj(x) =
N∑

i,j=1

a′ij(x)Aij(x)

= det(A(x))
N∑

i,j=1

a′ij(x)A
−1
ji (x) = det(A(x)) tr

(dA
dx

(x)A−1(x)
)
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by developing according to the columns that have been differentiated, denoting the signed
principal minors by Aij(x), so that A−1(x)ij = det(A(x))−1Aji(x).

This observation finally gives

B(x, 0) = 2
d

dx

(
ln det(I + S(x))

)
, q(x) = −2

d2

dx2

(
ln det(I + S(x))

)
,

by Theorem 4.3.1. We formalise this result.

Proposition 4.5.3. If q is a reflectionless potential with scattering data R(γ) = 0, {(pn, ρn) |
pn > 0, 1 ≤ n ≤ N}, then

q(x) = −2
d2

dx2

(
ln det(I + S(x))

)
,

with S(x) the N ×N-matrix given by

S(x)n,m =
√
ρnρme

−(pn+pm)x/(pn + pm).

In Section 5.5 we consider the case N = 2 with an additional time t-dependence of Propo-
sition 4.5.3. In case N = 2 we can make Proposition 4.5.3 somewhat more explicit;

det(I + S(x)) = det

(
1 + ρ1

2p1
e−2p1x

√
ρ1ρ2

p1+p2
e−(p1+p2)x

√
ρ1ρ2

p1+p2
e−(p1+p2)x 1 + ρ2

2p2
e−2p2x

)
= 1 +

ρ1

2p1

e−2p1x +
ρ2

2p2

e−2p2x +
( 1

4p1p2

− 1

(p1 + p2)2

)
ρ1ρ2e

−2(p1+p2)x

= 1 +
ρ1

2p1

e−2p1x +
ρ2

2p2

e−2p2x +
ρ1ρ2

4p1p2

(p2 − p1)
2

(p1 + p2)2
e−2(p1+p2)x

=

√
ρ1ρ2

2
√
p1p2

e−(p1+p2)x
{p2 − p1

p1 + p2

(p1 + p2

p2 − p1

2
√
p1p2√
ρ1ρ2

e(p1+p2)x +
p2 − p1

p1 + p2

√
ρ1ρ2

2
√
p1p2

e−(p1+p2)x
)

+
(√ρ1p2√

p1ρ2

e(p2−p1)x +

√
p1ρ2√
ρ1p2

e(p1−p2)x
)}

=
p2 − p1

p1 + p2

√
ρ1ρ2√
p1p2

e−(p1+p2)x
{

cosh
(
(p1 + p2)x+ ln(

p1 + p2

p2 − p1

2
√
p1p2√
ρ1ρ2

)
)

+
p1 + p2

p2 − p1

cosh
(
(p2 − p1)x+ ln(

√
ρ1p2√
p1ρ2

)
)}
.

This expression is used in Section 5.5.
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Chapter 5

Inverse scattering method and the
Korteweg-de Vries equation

5.1 The Korteweg-de Vries equation and some solutions

The Korteweg1-de Vries2, or KdV, equation is the following partial differential equation

qt(x, t)− 6 q(x, t) qx(x, t) + qxxx(x, t) = 0 or qt − 6qqx + qxxx = 0, (5.1.1)

where q is a function of two variables x, space, and t, time, with x, t ∈ R. Here qt(x, t) =
∂q
∂t

(x, t), etc. This equation can be viewed as a non-linear evolution equation by writing it as
qt = S(q) with S a non-linear map on a suitable function space defined by S(f) = 6f fx−fxxx.

We also consider the Korteweg-de Vries equation together with an initial condition;

qt(x, t)− 6 q(x, t) qx(x, t) + qxxx(x, t) = 0, q(x, 0) = q0(x), x ∈ R, t > 0. (5.1.2)

We first discuss some straightforward properties of the KdV-equation (5.1.1), also in rela-
tion to some other types of (partial) differential equations in the following exercises.

Exercise 5.1.1. Show that with q a solution to the Korteweg-de Vries equation (5.1.1) also
q̃(x, t) = q(x− 6Ct, t)− C is a solution. This is known as Galilean invariance.

Exercise 5.1.2. Show that by a change of variables the Korteweg-de Vries equation can be
transformed into qt + aqqx + bqx + cqxxx = 0 for arbitrary real constants a, b, c.

Exercise 5.1.3. The Burgers3 equation qt = qxx + 2qqx looks similar to the KdV-equation.
Show that the Burgers equation can be transformed into a linear equation ut = uxx by the
Hopf-Cole transformation q = (lnu)x.

1Diederik Johannes Korteweg (31 March 1848 — 10 May 1941), professor of mathematics at the University
of Amsterdam and supervisor of de Vries’s 1894 thesis “Bijdrage tot de kennis der lange golven”.

2Gustav de Vries (22 January 1866 — 16 December 1934), mainly worked as a high school teacher.
3Johannes Martinus Burgers (13 January 1895 — 7 June 1981), is one of the founding fathers of reserach

in fluid dynamics in the Netherlands.

83
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Exercise 5.1.4. The modified KdV-equation, or mKdV-equation, is ut + uxxx − 6u2ux = 0.
Show that for a solution u of the mKdV-equation, the relation q = ux + u2 gives a solution q
to the KdV-equation. This transformation is known as the Miura transformation. Hint: Show
that qt + qxxx − 6qqx can be written as a first order differential applied to ut + uxxx − 6u2ux.

With writing down this initial value problem, the question arises on the existence and
uniqueness of solutions. This is an intricate questions and the answer depends, of course, on
smoothness and decay properties of q0. We do not go into this, but formulate two result which
we will not prove. Our main concern is to establish a method in order to construct solutions
explicitly.

Theorem 5.1.5. Assume q0 ∈ C4(R) and
dkq0
dxk

(x) = O(|x|−M), M > 10, for k ∈ {0, 1, 2, 3, 4}.
Then the Korteweg-de Vries initial value problem (5.1.2) has a real-valued unique solution (in
the classical sense).

Exercise 5.1.6. In this exercise we sketch a proof of the unicity statement. Assume q and u
are solutions to (5.1.2), and put w = u− q.

• Show that wt = 6uwx + 6qxw − wxxx using the KdV-equation.

• Multiply by w and integrate to conclude

1

2

d

dt

∫
R
w2(x, t) dx = 6

∫
R
u(x, t)w(x, t)wx(x, t) dx+ 6

∫
R
qx(x, t)w

2(x, t) dx

−
∫

R
w(x, t)wxxx(x, t) dx

and argue that the last integral vanishes.

• Integrate by parts in the first integral to obtain

d

dt

∫
R
w2(x, t) dx = 12

∫
R
(qx(x, t)−

1

2
ux(x, t))w

2(x, t)dx.

• Use |qx(x, t) − 1
2
ux(x, t)| ≤ C to conclude d

dt

∫
Rw

2(x, t) dx = 12C
∫

Rw
2(x, t) dx and

conclude
∫

Rw
2(x, t) dx ≤ e12C

∫
Rw

2(x, 0) dx = 0. Hence w(x, t) = 0.

Theorem 5.1.5 is proved using the Inverse Spectral Method, a method that we discuss later,
and it should be noted that even a C∞(R)-condition of the initial value q0 is not sufficient to
guarantee a continuous global solution to (5.1.2). Methods from evolution equations have led
to the following existence result.

Theorem 5.1.7. Assume the initial value q0 is an element of the Sobolev space W s(R) for
s ≥ 2. Then the Korteweg-de Vries initial value problem (5.1.2) has a solution q such that
t 7→ q(·, t) is a continuous map from R≥0 into W s(R) and a C1-map from R≥0 into L2(R).
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The last statement means that limh→0 ‖ 1
h

(
q(·, t+ h)− q(·, t)

)
− qt(·, t)‖ = 0 in L2(R), and

moreover that t 7→ qt(·, t) is a continuous map from R≥0 to L2(R).
Solutions to the KdV-equation (5.1.1) have many nice properties, such as a large number

of invariants. Let us show that
∫

R q(x, t) dx is an invariant, i.e. independent of time t. Write

0 = qt − 6qqx + qxxx = qt +
(
−3q2 + qxx

)
x
.

Assuming that we can differentiate under the integral sign and that q and qxx decay sufficiently
fast we get

d

dt

∫
R
q(x, t) dx =

∫
R
qt(x, t) dx =

∫
R
(3q2(x, t) + qxx(x, t))x dx = 0.

In physical applications this is considered as conservation of mass. More generally, whenever
we have a relation of the form Tt + Xx = 0, where T and X are depending on the solution
q of the KdV-equation and its derivatives with respect to x, we have

∫
R T dx as a (possible)

invariant. In the above example we have T = q and X = −3q2 + qxx.

Exercise 5.1.8. Show also that under suitable conditions
∫

R q
2(x, t) dx is an invariant by

considering q(qt − 6qqx + qxxx) = 0 and writing this in the form (q2)t equals a derviative with
respect to x. This is considered as conservation of momentum. What are T and X?

In fact there is an infinite number of conserved quantities for the KdV-equation, and this
point of view is exploited in integrable systems.

We now give a class of solutions to (5.1.1) of the form q(x, t) = f(x− ct) for some c ∈ R.
This method is already worked out in the 1895-paper of Korteweg and de Vries. So the KdV
equation gives an ordinary partial differential equation for f ;

−cf ′ − 6ff ′ + f ′′′ = 0 =⇒ −cf − 3f 2 + f ′′ = a,

where a is some integration constant. Multiplying by f ′ shows that we can integrate again,
and

−cff ′ − 3f 2f ′ + f ′′f ′ = af ′ =⇒ − c
2
− f 3 +

1

2
(f ′)2 = af + b

for some integration constant b. This is a non-linear first order (ordinary) differential equation

(f ′)2 = F (f), F (x) = 2x3 + cx2 + af + b,

after rescaling the integrating constants. Since the left hand side is a square, the regions where
the cubic polynomial F is positive are of importance. So the zeros of the F play a role in the
analysis.

Remark 5.1.9. In general the equation y2 = F (x), with F a cubic polynomial, is an elliptic
curve, so that we can expect elliptic functions involved in the solution. The elliptic curve
is non-singular (i.e. no cusps or self-intersections) if and only if the polynomial F has three
distinct roots.
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The analysis now has to be split up according to the following cases;

1. F has three distinct real roots;

2. F has two real roots, of which one necessarily is of order two, and we have two cases:
the double root is smaller or larger than the simple root;

3. F has one simple root;

4. F has one root of order three.

y

0

2

-0.5

1

0
-1

-1

-2

-1.5

x

10.5

Figure 5.1: The cubic polynomial F in case 2 with double zero larger than the simple zero.

Case 1 can be completely solved in terms of elliptic functions. For our purposes case 2
is the most interesting, since the corresponding solution is related to the so-called soliton
solution of the KdV equation (5.1.1) The case 2 is of interest in case the simple root, say α, is
smaller than the double root, say β, so F (x) = 2(x− α)(x− β)2 as in the situation of Figure
5.1 with α = −1 and β = 0.

If one considers the differential equation (f ′)2 = F (f) in this case then we find that a
solution f with initial value α < f(x0) < β satisfies α < f(x) < β for all x. So we can expect
bounded solutions in this case.
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Taking square roots and noting that the differential equation is separable gives∫ f

α

dξ

(ξ − β)
√
ξ − α

= ±
√

2x+ C,

where C denotes a general arbitrary constant. In the integral we substitute ξ = α + (β −
α) sin2 ν, so dξ = α + (β − α)2 sin ν cos ν dν and the integration runs over [0, φ] with sinφ =√

f−α
β−α . So the integral equals −2√

β−α

∫ φ
0

1
cos ν

dν, and now using that d
dν

ln | tan(ν
2
)| = 1

sin ν
by an

elementary computation we find

−2√
β − α

ln | tan(
φ

2
+
π

4
)| = ±

√
2x+ C,

and using the addition formula for tan or for sin and cos we can rewrite this as

ln
∣∣∣1 + tan(φ

2
)

1− tan(φ
2
)

∣∣∣ = ±
√
β − α

2
(x− C).

Denoting the right hand side by y, we get
1+tan(φ

2
)

1−tan(φ
2
)

= ey which gives tan(φ
2
) = tanh(y

2
). Now

we can determine f as a function of x

f(x) = α+ (β − α) sin2 φ = α+ 4(β − α) sin2(
φ

2
) cos2(

φ

2
)

= α+ 4(β − α) tan2(
φ

2
) cos4(

φ

2
)

= α+ 4(β − α)
tan2(φ

2
)(

1 + tan2(φ
2
)
)2

= α+ 4(β − α)
tanh2(y

2
)(

1 + tanh2(y
2
)
)2

= α+ (β − α) tanh2(y) = β +
α− β

cosh2(y)

= β +
α− β

cosh2(
√

β−α
2

(x− C))

using cos2 φ = 1/(1 + tan2 φ) and 1
2

(
1 + tanh2(y

2
)
)
tanh y = tanh(y

2
) and using that cosh

is an even function. In this solution the zeros of F are related to c by c = −2α − 4β by
comparing the coefficients of x2 in the cubic polynomial F . We see that lim|x|→∞ f(x) = 0
can only be achieved by choosing β = 0, so that α < 0 and c = −α > 0, then f is essentially a
cosh−2-function, see Figure 2.1 for the case c = 4. So we have proved the following proposition.
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Proposition 5.1.10. For c > 0, the function

q(x, t) =
−c

2 cosh2(1
2

√
c(x− ct+ C))

is a solution to the KdV-equation (5.1.1) for any real constant C.

Note that q(x, t) is negative and its minimum occurs for x = ct, so we can view this as
a solitary wave (directed downwards) of height 1

2
c travelling to the right at a speed c. Note

that the height and speed are related!

Exercise 5.1.11. Assume now that F has one root of order three. Show that this root is
−1

6
c, and that the corresponding solution is f(x) = −1

6
c+ 2

(x−C)2
.

Exercise 5.1.12. Give a qualitative analysis of possible growth/decay behaviour of the solu-
tions to (f ′)2 = F (f) for the other listed cases for the cubic polynomial F .

Exercise 5.1.13. Assume now that F has three distinct real roots, then one can proceed
in the same way, except that now we get the integral of the form

∫ φ
0

1√
1−k2 sin2 ν

dν instead of∫ φ
0

1
cos ν

dν. Use the Jacobian elliptic function cn defined by

v =

∫ φ

0

1√
1− k2 sin2 ν

dν cosφ = cn(v; k).

The corresponding solutions to the KdV-equation (5.1.1) are known as cnoidal waves, and
were already obtained by Korteweg and de Vries in their 1895 paper.

In the course of history the KdV-equation (5.1.1) has been linked to other well-known
ordinary differential equations by other suitable substitutions, and two of them are discussed
in the following exercises.

Exercise 5.1.14. Put q(x, t) = t + f(x + 3t2), and show that q satisfies the KdV-equation
(5.1.1) if and only if f satisfies 1 − 6ff ′ + f ′′′ = 0, or by integrating C + z − 3f 2 + f ′′ = 0.
This equation is essentially the Painlevé I equation g′′(x) = 6g2(x) + x, which is the sim-
plest equation in the Painlevé4 equations consisting of 6 equations. The Painlevé equations
are essentially the second order differential equations of the form y′′(t) = R(t, y, y′) with R
a polynomial in y, y′ with meromorphic coefficients in t together with the Painlevé prop-
erty meaning that there are no movable branch points and no movable essential singularities
exluding linear and integrable differential equations.

Exercise 5.1.15. Put q(x, t) = −(3t)−2/3f
(

x
(3t)1/3

)
, and show that q is a solution to the KdV-

equation (5.1.1) if and only if f satisfies f ′′′ + (6f − z)f ′ − 2f = 0. This is related to the
Painlevé II equation.

4Paul Painlevé (5 December 1863 — 29 October 1933), French mathematician and politician. Painlevé was
Minister in several French Cabinets, as well as Prime-Minister of France.
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5.2 The KdV equation related to the Schrödinger op-

erator

This section is of a motivational and historical nature, and no proofs are given, only heuristical
derivations.

The link between the Korteweg-de Vries equation and the Schrödinger operator has been
pointed out in a three-page paper by Gardner, Greene, Kruskal and Miura of the Plasma
Physics Laboratory of Princeton University in the Physical Review Letters in 1967. This
paper5 has turned out to be a starting point for a whole line of research for solving certain
non-linear partial differential equations. We give a short description of their line of reasoning,
which apparently was strongly motivated by numerical experiments. The approach has been
generalised enormously, and we consider the approach by Lax in Section 5.3 in more detail.

Consider the Schrödinger equation with time-dependent potential,

−fxx(x, t) + q(x, t)f(x, t) = λ(t)f(x, t),

where the eigenfunctions and eigenvalues will also depend on t. Expressing q in terms of
f and λ and plugging this into the KdV-equation (5.1.1) gives a huge equation, that upon
multiplying by f 2, can be written as

λtf
2 +
(
f ux− fx u

)
x

= 0, u(x, t) = ft(x, t)+ fxxx(x, t)− 3
(
q(x, t)+λ(t)

)
fx(x, t). (5.2.1)

This is a tedious verification and one of the main steps, assuming that all partial derivatives
exist and ftxx = fxxt. Note that the second term in (5.2.1) is a derivative of a Wronskian.
Later it has been pointed out that the KdV-equation can be interpreted as a compatibility
condition ftxx = fxxt for solutions of systems of partial differential equations. This approach
has also led to several other generalisations.

Integrating relation (5.2.1) over R, and assuming that f ∈ L2(R), so that λ corresponds
to the discrete spectrum of the Schrödinger operator, we get

λt‖f‖2 = − lim
a→∞

f(x, t)ux(x, t)− fx(x, t)ux(x, t)
∣∣∣a
−a

and the right hand side gives zero, so that the (discrete) spectrum is constant. So the im-
portant observation is that the KdV-equation is a description of an isospectral family of
Schrödinger operators. Hence, we can proceed as follows to find a solution to an initial value
problem (5.1.2) for the KdV-equation:

1. Describe the spectral data of the Schrödinger operator with potential q0; this is described
in Section 4.2.

2. Solve the evolution of the spectral data when the potential evolves according to the
KdV-equation; this is yet unclear.

5Gardner, Greene, Kruskal and Miura have received the 2006 AMS Leroy P. Steele Prize for a Seminal
Contribution to Research for one of their follow-up papers.
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3. Determine the potential q(x, t) from the spectral data of the Schrödinger operator at
time; this can be done essentially using the Gelfand-Levitan-Marchenko integral equation
of Theorem 4.4.2 and Theorem 4.3.1.

We shortly derive heuristically that the evolution in step 2 is linear, and since the Gelfand-
Levitan-Marchenko integral equation is also linear, this procedure gives a mainly linear method
to solve the KdV-inital value problem (5.1.2). Note however that in explicit cases it is hard
to solve the Gelfand-Levitan-Marchenko equation explicitly, except for the reflectionless po-
tentials as discussed in Section 4.5. This method is now known as the Inverse Scattering
Method (ISM), or inverse spectral method, or inverse scattering transformation. The inverse
scattering method can be considered as an analogue of the Fourier transform used to solve
linear differential equations.

Now that we have established λt = 0 for an eigenvalue λ in the discrete spectrum, we use
this in (5.2.1) and carrying out the differentiation gives

0 = (f ux − fx u)x = f uxx − fxx u = f
(
uxx − (q − λ)u

)
,

or u is also a solution to the Schrödinger equation. Hence, u = C f +D g, with C,D ∈ C and
g a linearly independent solution, i.e.

ft + fxxx − 3(q + λ) fx = C f +D g. (5.2.2)

Assume λ = λn = −p2
n a discrete eigenvalue using the notation as in Theorem 4.2.7, so that

f(x, t) = fn(x, t) ∼ e−pnx for x → ∞. So in the region where the potential vanishes, in
particular for x → ∞, we see that left hand side has exponential decay, and since g doesn’t
have exponential decay, it follows that D = 0.

Now fixing n, normalise ψ(x, t) = c(t)fn(x, t), so that ‖ψ(·, t)‖ = 1 for all t, and since in
the above considerations f was an arbitrary solution to the Schrödinger equation we get

ψt + ψxxx − 3(q + λ)ψx = Cψ.

We claim that C = 0, and in order to see this we multiply this equation by ψ and integrate
over R with respect to x. Then the left hand side equals C. Now recall

∫
R ψt(x, t)ψ(x, t) dx =

1
2

(
〈ψt(·, t), ψ(·, t)〉 + 〈ψ(·, t), ψt(·, t)〉

)
= 1

2
d
dt
‖ψ(·, t)‖2 = 0, since its norm is constant 1. Also∫

R λnψx(x, t)ψ(x, t) dx = λn
1
2
ψ(x, t)2|∞−∞ = 0, since the eigenfunction decays exponentially

fast. Similarly,
∫

R ψxxx(x, t)ψ(x, t) dx = −
∫

R ψxx(x, t)ψx(x, t) dx = −1
2

(
ψx(x, t)

)2|∞−∞ = 0,
since the derivative of the eigenfunction decays exponentially.

∫
R q(x, t)ψx(x, t)ψ(x, t) dx =∫

R
λnψx(x, t)ψ(x, t) dx +

∫
R ψx(x, t)ψxx(x, t) dx = 0, as before. So for the normalised eigen-

function ψ(·, t) for the constant eigenvalue λn we find

ψt + ψxxx − 3(q + λ)ψx = 0.

Now use ψ(x, t) ∼ c(t)e−pnx as x → ∞, and since we assume that the potential decays
sufficiently fast we get a linear first order differential equation for c(t);

dc

dt
(t) + (−pn)3c(t)− 3(−p2

n)(−pn)c(t) = 0 =⇒ c(t) = e4p
3
ntc(0).



Chapter 5: Inverse scattering method and the KdV equation 91

Now that we have determined the evolution of the discrete part of the spectral data,
we consider next the evolution of the continuous part of the spectrum. Let λ = γ2, and
consider (5.2.2) for ψ(x, t) = ψγ(x, t) with ψγ as in Section 4.2, where we now assume that
the transmission and reflection coefficient also depend on t; R(γ, t), T (γ, t). Again using that
the potential q vanishes for large enough x, we see that

ψt(x, t) + ψxxx(x, t)− 3(q(x, t) + λ)ψx(x, t) ∼
(
Tt(γ, t) + 4iγ3T (γ, t)

)
e−iγx, x→ −∞,

ψt(x, t) + ψxxx(x, t)− 3(q(x, t) + λ)ψx(x, t) ∼ 4iγ3e−iγx +
(
Rt(γ, t)− 4iγ3

)
eiγx, x→∞.

We conclude that ψt +ψxxx− 3(q+λ)ψx is a constant multiple of ψ, and this constant is 4iγ3

as follows by looking at the coefficient of e−iγx for x → ∞. Equating gives two linear first
order differential equations for the transmission and reflection coefficients;

Tt(γ, t) + 4iγ3T (γ, t) = 4iγ3T (γ, t) =⇒ T (γ, t) = T (γ, 0),

Rt(γ, t)− 4iγ3R(γ, t) = 4iγ3R(γ, t) =⇒ R(γ, t) = R(γ, 0)e8iγ
3t.

Note that this also implies that starting with a reflectionless potential q0, we stay within the
class of reflectionless potentials.

Exercise 5.2.1. Assume that the solution scheme for the Korteweg-de Vries equation with
initial value q0(x) = − c

2
cosh−2(1

2

√
cx) of this section is valid. Use the results of Section 4.5

to derive the solution q(x, t) of Proposition 5.1.10. in this way. This solution is known as the
pure 1-soliton solution, see Section 5.5.

5.3 Lax pairs

The method of Lax6 pairs is a more general method to find isospectral time evolutions. In
the general setup, we have a family of operators L(t), t ∈ I with I ⊂ R some interval, acting
on a Hilbert space H. We assume that the domains do not vary with t, so D(L(t)) = D(L)
for all t and that D(L) is dense. We say that the family is strongly continuous if for each
x ∈ D(L) = D(L(t)) the map t 7→ L(t)x, I → H, is continuous. The family L(t) is isospectral
if the spectrum of L(t) is independent of t.

The basic example is the Schrödinger operator with time-dependent potential

L(t) = − d2

dx2
+ q(·, t), D(L(t)) = W 2(R),

assuming the potential q(·, t) satisfies the conditions of Corollary 2.2.6 for all t.

Definition 5.3.1. The derivative dL
dt

(t) = Lt(t), t ∈ I, of a strongly continuous family L(t) is
defined with respect to the strong operator topology, i.e. D(Lt(t)) consists of those x ∈ D(L) ⊂
H such that

lim
h→0

L(t+ h)x− L(t)x

h
converges in H to, say, y ∈ H, and then Lt(t)x = y.

6Peter D. Lax (1 May 1926 — ), Hungarian-American mathematician, winner of the 2005 Abelprize.
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Definition 5.3.1 should be compared with Stone’s Theorem 6.4.2.
Assuming that D(Lt(t)) is independent of t and dense in H, then again Lt(t) gives a

family of operators on H. If this family is again strongly continuous, then we say that L(t) is
a strongly C1-family of operators.

Return to the example of a family of Schrödinger operators, then for any f ∈ W 2(R), we
have as elements in L2(R)

1

h

(
−f ′′ + q(·, t+ h)f + f ′′ − q(·, t)f

)
= f

q(·, t+ h)− q(·, t)
h

.

Assuming that the partial derivative with respect to t of q exists we obtain

‖1

h

(
L(t+ h)f − L(t)f

)
− qt(·, t)f‖2 =

∫
R

∣∣∣q(x, t+ h)− q(x, t)

h
− qt(x, t)

∣∣∣ |f(x)|2 dx.

If we assume moreover that qt(·, t) ∈ L∞(R) we can apply Dominated Convergence Theorem
6.1.3 to see that the right hand tends to zero as h → 0 even for arbitrary f ∈ L2(R).
So in this case we have established Lt(t) as multiplication operator by qt(·, t) with domain
D(L) = W 2(R).

Let us assume that we also have a strongly continuous family of bounded operators V (t) ∈
B(H), which is bounded in operator norm ‖V (t)‖ ≤M for all t. As an application we derive a
product rule, which is the same as for functions except that we have to keep track of domains.
Note that D(V (t)L(t)) = D(L(t)) = D(L) is independent of t, and write for x ∈ D(Lt(t))

1

h

(
V (t+ h)L(t+ h)x− V (t)L(t)x

)
=

1

h

(
V (t+ h)L(t+ h)x− V (t+ h)L(t)x

)
+

1

h

(
V (t+ h)L(t)x− V (t)L(t)x

)
=V (t+ h)

1

h

(
L(t+ h)x− L(t)x

)
+

1

h

(
V (t+ h)L(t)x− V (t)L(t)x

)
and the first term tends to V (t)Lt(t)x as follows from∥∥V (t+ h)

1

h

(
L(t+ h)x− L(t)x

)
− V (t)Lt(t)x

∥∥
≤
∥∥V (t+ h)

1

h

(
L(t+ h)x− L(t)x

)
− V (t+ h)Lt(t)x

∥∥+
∥∥V (t+ h)Lt(t)x− V (t)Lt(t)x

∥∥
≤ M

∥∥1

h

(
L(t+ h)x− L(t)x

)
− Lt(t)x

∥∥+
∥∥V (t+ h)Lt(t)x− V (t)Lt(t)x

∥∥
and the first term tends to 0 as h → 0 by definition of the derived operator and the second
tends to zero since V is strongly continuous. Moreover, the second term tends to Vt(t)L(t)x
if we assume that L(t)x ∈ D(Vt(t)). So we have proved Lemma 5.3.2.

Lemma 5.3.2. Let L(t) be a strongly continuous family of operators on a Hilbert space H
with constant domain D(L) = D(L(t)) and let V (t) be a strongly continuous family of bounded
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operators on H which is uniformly bounded in the operator norm. If x ∈ D(Lt(t)) and L(t)x ∈
D(Vt(t)), then x ∈ D

(
(V L)t(t)

)
and

d(V L)

dt
(t)x = Vt(t)L(t)x+ V (t)Lt(t)x.

(ii) Let V (t) be as in (i), then dV ∗

dt
(t) =

(
Vt(t)

)∗
.

Exercise 5.3.3. Prove the remaining statement of Lemma 5.3.2. What happens if we try to
differentiate L(t)V (t) with respect to t?

For any two (possibly) unbounded operators (A,D(A)), and (B,D(B)) the commutator
[A,B] is defined as the operator [A,B] = AB − BA with D([A,B]) = D(AB) ∩ D(BA) =
{x ∈ D(A) ∩D(B) | Bx ∈ D(A) and Ax ∈ D(B)}.

Theorem 5.3.4 (Lax). Let L(t), t ≥ 0, be a family of self-adjoint operators on a Hilbert
space with D(L(t)) = D(L) independent of t which is strongly continuously differentiable.
Assume that there exists a family of anti-selfadjoint operators B(t), with constant domain
D(B(t)) = D(B), depending continuously on t such that

• Lt = [B,L], i.e. Lt(t) = [B(t), L(t)] for all t ≥ 0,

• there exists a strongly continuous family V (t) ∈ B(L2(R)) satisfying Vt(t) = B(t)V (t),
V (0) = 1 ∈ B(L2(R)),

• L(t)V (t) is differentiable with respect to t.

Then L(t) is unitarily equivalent to L(0) and in particular, the spectrum of L(t) is independent
of t.

Such pairs L, B are called Lax pairs, and this idea has been fruitful in e.g. integrable
systems, see Exercise 5.3.9 for an easy example.

Note that in case B(t) is independent of t, then we can take V (t) = exp(tB). In particular,
this is a family of unitary operators, since B is anti-selfadjoint and so the second requirement
is automatically fulfilled. This remains true in the general time dependent case under suitable
conditions on B(t), but there is not such an easy description of the solution. This is outside
the scope of these notes, but in the case of the KdV-equation as in the sequel Vt(t) = B(t)V (t),
V (0) = I has a unitary solution in case q(·, 0) ∈ W 3(R).

Sketch of proof. We first claim that V (t) is actually unitary for each t. To see this, take
w(t) = V (t)w, v(t) = V (t)v and so dw

dt
(t) = B(t)w(t) and dv

dt
(t) = B(t)v(t), so that

d

dt
〈w(t), v(t)〉 = 〈 d

dt
w(t), v(t)〉+ 〈w(t),

d

dt
v(t)〉 = 〈B(t)w(t), v(t)〉+ 〈w(t), B(t)v(t)〉

= 〈B(t)w(t), v(t)〉 − 〈B(t)w(t), v(t)〉 = 0.
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Or 〈V (t)w, V (t)v〉 = 〈w, v〉, and V (t) is an isometry, and since we also get from this 〈w, v〉 =
〈V (t)∗V (t)w, v〉 for arbitrary v it follows V (t)∗V (t) = 1 or V (t) is surjective. Since a surjective
isometry is unitary, the claim follows.

By Lemma 5.3.2 we see that V (t)∗ is also differentiable, and so is L̃(t) = V (t)∗L(t)V (t).
We want to show that L̃(t) is independent of t. Assuming this for the moment, it follows
that V (t)∗L(t)V (t) = L(0), since V (0) = 1, and hence L(t) is unitarily equivalent to L(0) by
L(t) = V (t)L(0)V (t)∗.

To prove the claim we differentiate with respect to t the relation L(t)V (t) = V (t)L̃(t);

dL

dt
(t)V (t) + L(t)

dV

dt
(t) =

dV

dt
(t) L̃(t) + V (t)

dL̃

dt
(t)

=⇒ dL

dt
(t)V (t) + L(t)B(t)V (t) = B(t)V (t) L̃(t) + V (t)

dL̃

dt
(t)

=⇒ dL

dt
(t)V (t) + L(t)B(t)V (t) = B(t)V (t)V (t)∗ L(t)V (t) + V (t)

dL̃

dt
(t)

=⇒ V (t)
dL̃

dt
(t) =

(dL
dt

(t) + L(t)B(t)−B(t)L(t)
)
V (t) = 0

using the product rule of Lemma 5.3.2, the differential equation for V (t) for the unitary family.

Since V (t) is unitary we get dL̃
dt

(t) = 0.

Exercise 5.3.5. Show formally that a self-adjoint operator of the form L = L0 +Mq, where
L0 is a fixed self-adjoint operator and Mq is multiplication by a t-dependent function q, and
assuming there exists a anti-selfadjoint B such that BL− LB = MK(q), then L is isospectral
if q satisfies the equation qt = K(u).

Lax’s Theorem 5.3.4 dates from 1968, shortly after the the discovery of Gardner, Greene,
Kruskal and Miura of the isospectral relation of the Schrödinger operator and the KdV-
equation. In order to see how the KdV-equation arises in the context of Lax pairs, we take
L(t) as before as the Schrödinger operator with time-dependent potential q(·, t). We look for
B(t) in the form of a differential operator, and since it has to be anti-self-adjoint we only
allow for odd-order derivatives, i.e. we try for integer m and yet undetermined functions bj,
j = 0, · · · ,m− 1,

Bm(t) =
d2m+1

dx2m+1
+

m−1∑
j=0

(
Mj(t)

d2j+1

dx2j+1
+

d2j+1

dx2j+1
Mj(t)

)
,

(
Mj(t)f

)
(x) = bj(x, t)f(x),

considered as operator on L2(R) with domain W 2m+1(R) for suitable functions bj.
In case m = 0 we have B0(t) is d

dx
independent of t, and [B,L] = qx, i.e. the multiplication

operator on L2(R) by multiplying by qx. So then the condition Lt = [B,L] is related to the
partial differential equation qt = qx.

Exercise 5.3.6. Solve qt = qx, and derive directly the isospectral property of the correspond-
ing Schrödinger operator L(t).
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In case m = 1 we set B1 = ∂3 + b∂ + ∂b, where ∂ denotes derivative with respect to x and
where b = b(x, t), B1 = B1(t), then

[B1(t), L(t)] =
(
∂3 + b∂ + ∂b

)(
−∂2 + q

)
−
(
∂3 + b∂ + ∂b

)(
−∂2 + q

)
= [∂3, q]− [∂3, b] + [∂, ∂b∂] + [b∂, q] + [∂b, q]

and using the general commutation [∂, f ] = fx repeatedly we see [∂3, q] = 3∂qx∂ + qxxx,
[∂, ∂b∂] = ∂bx∂, [b∂, q] = bqx, [∂b, q] = bqx, so that we obtain

[B1(t), L(t)] = ∂(3qx − 2bx)∂ + qxxx − bxxx + 2bqx,

and in order to make this a multiplication operator we need 3qx − 2bx = 0, or bx = 3
2
qx.

Choosing b = 3
2
q we see that we require the relation

−1

2
qxxx + 3qqx = [B1(t), L(t)] = Lt(t) = qt,

which is the KdV-equation up to a change of variables, see Exercise 5.1.2.

Exercise 5.3.7. Check that taking B(t) = −4 d3

dx3 + 6q(x, t) d
dx

+ 3qx(x, t) gives [B(t), L(t)] =
−qxxx(·, t) + 6qx(·, t)q(·, t) corresponding to the KdV-equation (5.1.1).

Exercise 5.3.8. Consider the case m = 2 and derive the corresponding 5-th order partial
differential equation for q. Proceeding in this way, one obtains a family of Korteweg-de Vries
equations.

Exercise 5.3.9. Assume that we have a Lax pair as in Theorem 5.3.4 in the case of a
finite dimensional Hilbert space, e.g. H = C2. Then we can view Lt = [B,L] as a system of
N = dimH first order coupled differential equations. Show that tr

(
L(t)

)n
then gives invariants

for this system. Work this out for the example of the harmonic oscillator; p̈+ ω2p = 0, where

dot denotes derivative with respect to time t, by checking that L =

(
p ωq
ωq −p

)
, B is the

constant matrix

(
0 −1

2
ω

1
2
ω 0

)
and q̇ = p gives a Lax pair.

The idea of Lax pairs has turned out to be very fruitful in many other occassions; similar
approaches can be used for other nonlinear partial differentil equations, such as the sine-
Gordon equation, the nonlinear Schrödinger equations, see Exercise 5.3.5. These equations
have many properties in common, e.g. an infinite number of conserved quantities, so-called
Bäcklund transformations to combine solutions into new solutions –despite the nonlinearity.
We refer to [2], [6] for more information.

5.4 Time evolution of the spectral data

Assume that we have a Lax pair as in Section 5.3, and assume that L(0) has µ as a discrete
eigenvalue with eigenvector w ∈ H. By Theorem 5.3.4, it follows that µ is an eigenvalue of
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L(t), and since L(t) = V (t)L(0)V (t)∗ it follows that L(t)V (t)w = V (t)L(0)w = µV (t)w, or
w(t) = V (t)w is the eigenvector of L(t) for the eigenvalue µ. So we have an explicit evolution
of the eigenvector for the constant eigenvalue µ. This eigenfunction also satisfies a first order
differential equation, since

d

dt
w(t) = Vt(t)w = B(t)V (t)w = B(t)w(t).

Exercise 5.4.1. Check directly for the case m = 0, cf. Exercise 5.3.6, that the eigenfunction
for a discrete eigenvalue µ satisfies the appropriate differential equation at arbitrary time t.

Assume now that q(·, t) satisfies the conditions of Theorem 4.2.7 for all t, and assume
that the Schrödinger operator at time t = 0 has bound states. Then it follows that it has
the same bound states at all times t, and we denote ψn(x, t) = Nn(t)fn(x, t), Nn(t) =

√
ρn(t)

with the notation as in Theorem 4.2.7 with time dependency explicitly denoted. In particular,
‖ψn(·, t)‖ = 1 for all t. Let us also assume that q(·, t) is compactly supported for all (fixed) t,
then we know by Theorem 4.1.2, with notation as in Theorem 4.2.7 that fn(x, t) = e−pnx for
x sufficiently large, i.e. outside the support of q(·, t). For such x we have B(t) = −4 d3

dx3 with
the version as in Exercise 5.3.7, so that

d

dt
ψn(x, t) = B(t)ψn(x, t) = −4

d3

dx3
N(t)e−pnx = 4p3

nN(t)e−pnx,

d

dt
ψn(x, t) =

d

dt
Nn(t)e

−pnx = e−pnx
dNn

dt
(t)

for sufficiently large x. So dNn

dt
(t) = 4p3

nN(t), and Nn(t) = exp(4p3
nt)Nn(0) or ρn(t) =

exp(8p3
nt)ρn(0). So this gives the time-development for the discrete part of the scattering

data in terms of a simple linear first order differential equation.
For the time-dependency of the scattering and reflection coefficient we proceed in an anal-

ogous way. Take γ ∈ R and assume that q(·, t) satisfies the conditions of Theorem 4.2.7 for
all t. Consider the solution ψγ(x) = T (γ) f−γ (x) = f+

−γ(x) + R(γ) f+
γ (x) for the eigenvalue

equation for Schrödinger solution at time zero for the eigenvalue γ2, see Section 4.2. Then we
know by Lax’s Theorem 5.3.4 that Ψγ(x, t) = V (t)ψγ(x) is a solution of the corresponding
eigenvalue equation for the Schrödinger equation at time t. So we can write

Ψγ(x, t) = A(t) f+
−γ(x, t) + E(t) f+

γ (x, t) = C(t) f−−γ(x, t) +D(t) f−γ (x, t)

with A(0) = 1, E(0) = R(γ), C(0) = 0, D(0) = T (γ), where f±±γ(x, t) denote the Jost
solutions of the corresponding Schrödinger operator at time t. Moreover, assume that q(·, t) is
compactly supported for all (fixed) t, so that Ψγ(x, t) = A(t) e−iγx+E(t) eiγx for x sufficiently

large. Again for such x we have B(t) = −4 d3

dx3 and so

d

dt
Ψγ(x, t) = B(t) Ψγ(x, t) = −4(−iγ)3A(t) e−iγx − 4(iγ)3E(t) eiγx

d

dt
Ψγ(x, t) =

dA

dt
(t) e−iγx +

dE

dt
(t) eiγx.
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This gives dA
dt

(t) = −4iγ3A(t), A(0) = 1 and dE
dt

(t) = 4iγ3E(t), E(0) = R(γ), hence A(t) =
exp(−4iγ3t), E(t) = exp(4iγ3t)R(γ).

For x sufficiently negative we find Ψγ(x, t) = C(t) eiγx +D(t) eiγx, and

d

dt
Ψγ(x, t) = B(t) Ψγ(x, t) = −4(iγ)3C(t) eiγx − 4(−iγ)3D(t) e−iγx

d

dt
Ψγ(x, t) =

dC

dt
(t) eiγx +

dD

dt
(t) e−iγx.

This gives dC
dt

(t) = 4iγ3C(t), C(0) = 0 and dD
dt

(t) = −4iγ3D(t), E(0) = T (γ). Hence
C(t) = 0, D(t) = exp(−4iγ3t)T (γ).

Combining this then gives

Ψγ(x, t) = e−4iγ3t T (γ) f−γ (x, t) = e−4iγ3t f+
−γ(x, t) + e4iγ

3tR(γ) f+
γ (x).

If we now denote the corresponding time-dependent Jost solutions, transmission and reflection
coefficients by

ψγ(x, t) = T (γ, t) f−γ (x, t) = f+
−γ(x, t) +R(γ, t) f+

γ (x, t),

we obtain e4iγ
3tΨγ(x, t) = ψγ(x, t). This then immediately gives T (γ, t) = T (γ), or the

transmission coefficient is independent of time, and R(γ, t) = e8iγ
3tR(γ).

Theorem 5.4.2. Assume q(x, t) is a solution to the KdV-equation (5.1.1) such that for each

t ≥ 0 the function q(·, t), t ≥ 0, satisfies the conditions of Theorem 4.2.7 and such that ∂kq
∂xk (x, t)

is bounded for k ∈ {0, 1, 2, 3} as |x| → ∞ and lim|x|→∞ q(x, t) = lim|x|→∞ qx(x, t) = 0. Then

the scattering data of L(t) = − d2

dx2 + q(·, t) satisfies

T (γ, t) = T (γ), R(γ, t) = e8iγ
3tR(γ), pn(t) = pn(0), ρn(t) = exp(8p3

nt)ρn(0).

In case q(·, t) is of compact support, then the above argumentation leads to the statements
of Theorem 5.4.2. For the N -soliton solutions this is not the case, and we need Theorem 5.4.2
in the more general form. The idea of the proof is the same.

Note that Theorem 5.4.2 provides a solution scheme for the KdV-equation with initial
condition (5.1.2) as long as the initial condition q(·, 0) satisfies the conditions. Determine the
scattering data at time t, and next use the Gelfand-Levitan-Marchenko integral equation as
in Theorem 4.4.2 to determine q(x, t).

5.5 Pure soliton solutions to the KdV-equation

We now look for specific solutions of the KdV-equation using Theorem 5.4.2. The pure N -
soliton solution to the KdV-equation (5.1.1) is the solution that is determined using Theorem
5.4.2 starting with a reflection-less potential and with N discrete points in the spectrum at
time t = 0. Note that by Theorem 5.4.2 the potential remains reflectionless in time, and the
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corresponding Schrödinger operator has N discrete points in the spectrum in time. We only
consider the cases N = 1 and N = 2.

We first consider the case N = 1 and R(γ) = 0 at time t = 0. By Proposition 4.5.1 the
potential at time t = 0 equals q(x, 0) = −2 cosh−2(x + C), C = 1

2
ln 2, see the derivation in

the beginning of Section 4.5, but the constant C can be scaled away. From Proposition 4.5.1
we see that p = p1 = 1 and ρ = ρ1 = 1 at time t = 0. Using Theorem 5.4.2 we find that at
arbitrary time t we have p(t) = 1 and ρ(t) = e8t. So we can solve the potential q(x, t) at time
t in the same way as in the beginning of Section 4.5, using p = 1, ρ = e8t, or we can just use
(4.5.1) with ρ = e8t. This then gives q(x, t) = −2 cosh−2(x − 4t + C), which is precisely the
solution for the KdV-equation given in Proposition 5.1.10 for c = 4, and we obtain the pure
1-soliton solution.

Next we consider the case N = 2, so that we require at time t = 0 the conditions R(γ) = 0,
p1 = 1, p2 = 2, ρ1 = 1

2
, ρ2 = 1, q(x, 0) = −6 cosh−2(x), as follows from Proposition 4.5.3. Now

the time evolution of the scattering data follows from Theorem 5.4.2, so that R(γ, t) = 0 for
all t, p1(t) = p1 = 1, p2(t) = p2 = 2, ρ1(t) = 1

2
e8t, ρ2(t) = e64t. We then need to solve for the

kernel B(x, y; t) and the potential q(x, t) = − d
dx
B(x, 0) from the Gelfand-Levitan-Marchenko

equation. For this we use Proposition 4.5.3 in the case N = 2. It follows that the determinant
of the symmetric matrix I + S(x, t), which is now time-dependent, is given by

det(I + S(x, t)) =
1

6
e36t−3x

(
cosh(3x− 36t+ ln(12)) + 3 cosh(x− 28t)

)
using the calculation given after Proposition 4.5.3 for the case N = 2. By replacing x and t
by x+ a, t+ b for suitable a and b we can reduce to the case that

det(I + S(x, t)) = C e36t−3x
(
cosh(3x− 36t) + 3 cosh(x− 28t)

)
for some constant C independent of x and t. Take the logarithm and deriving the resulting

expression twice and multiplying by −2 to find the potential; q(x, t) = 2 (f ′(x))2−f ′′(x)f(x)
(f(x))2

, with

f(x) = det(I + S(x, t)). This shows that the potential q(x, t) is indeed independent of C.
Using a computer algebra system is handy, and in case one uses Maple, we find

q(x, t) = −12
5 cosh (−x+ 28 t) cosh (−3x+ 36 t) + 3− 3 sinh (−x+ 28 t) sinh (−3x+ 36 t)

(3 cosh (−x+ 28 t) + cosh (−3x+ 36 t))2 .

Using the addition formula cosh(x± y) = cosh(x) cosh(y)± sinh(x) sinh(y) we obtain

q(x, t) = −12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)(
3 cosh(x− 28t) + cosh(3x− 36t)

)2 . (5.5.1)

Note that indeed

q(x, 0) = −12
3 + 4 cosh(2x) + cosh(4x)(

3 cosh(x) + cosh(3x)
)2 =

−6

cosh2(x)
,
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as can be done easily in e.g. Maple. Compare this with Proposition 4.5.3. The solution (5.5.1)
is known as the pure 2-soliton solution.

So we have proved from Theorem 5.4.2 and the inverse scattering method described in
Sections 4.4, 4.5 the following Proposition.

Proposition 5.5.1. Equation (5.5.1) is a solution to the KdV-equation (5.1.1) with initial
condition q(x, 0) = −6

cosh2(x)
.

Having the solution (5.5.1) at hand, one can check by a direct computation, e.g. using a
computer algebra system like Maple, that it solves the KdV-equation. However, it should be
clear that such a solution cannot be guessed without prior knowledge.

In Figure 5.2 we have plotted the solution q(x, t) for different times t. It seems that q(·, t)
exists of two solitary waves for t � 0 and t � 0, and that the ‘biggest’ solitary wave travels
faster than the ‘smallest’ solitary wave, and the ‘biggest’ solitary wave overtakes the ‘smallest’
at t = 0. For t ≈ 0 the waves interact, and then the shapes are not affected by this interaction
when t grows. This phenomenon is typical for soliton solutions.

In order to see this from the explicit form (5.5.1) we introduce new variables x1 = x−4p2
1t =

x − 4t and x2 = x − 4p2
2t = x − 16t, so Figure 5.2 suggest that the ‘top’ of the ‘biggest’ or

‘fastest travelling’ solitary wave occurs for x2 = 0, and the top for the ‘smallest’ or ‘slowest
travelling’ solitary wave occurs for x1 = 0. So we see the ‘biggest’ solitary wave travel at four
times the speed of the ‘smallest’ solitary wave.

We first consider the ‘fastest travelling’ solitary wave, so we rewrite

q2(x2, t) = q(x2 + 16t, t) = −12
3 + 4 cosh(2x2 + 24t) + cosh(4x2)(

3 cosh(x2 − 12t) + cosh(3x2 + 12t)
)2 ,

so that for t→∞ we have

q2(x2, t) ∼ −12
2e2x2+24t(

3
2
e12t−x2 + 1

2
e3x2+12t

)2 =
−8

cosh2(2x2 − 1
2
ln(3))

and for t→ −∞ we have

q2(x2, t) ∼ −12
2e−2x2−24t(

3
2
e−12t+x2 + 1

2
e−3x2−12t

)2 =
−8

cosh2(2x2 + 1
2
ln(3))

.

From these asymptotic considerations, we see that the ‘biggest’ solitray wave undergoes a
phase-shift, meaning that its top is shifted by ln(3) forward during the interaction with the
‘smallest’ solitary wave.

Similarly, we can study

q1(x1, t) = q(x1 + 4t, t) = −12
3 + 4 cosh(2x1) + cosh(4x1 − 48t)(

3 cosh(x1 − 24t) + cosh(3x1 − 24t)
)2 ,
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so that

q1(x1, t) ∼


−12

1
2
e48t−4x1

(3
2
e24t−x1 + 1

2
e24t−3x1)2

=
−2

cosh2(x1 + 1
2
ln(3))

, t→∞,

−12
1
2
e−48t+4x1

(3
2
e−24t+x1 + 1

2
e−24t+3x1)2

=
−2

cosh2(x1 − 1
2
ln(3))

, t→ −∞.

So the ‘smallest’ wave undergoes the same phase-shift, but in the opposite direction.
So we can conclude that

q(x, t) ∼ −2

cosh2(x− 4t± 1
2
ln(3))

+
−8

cosh2(x− 16t∓ 1
2
ln(3))

, t→ ±∞.

This also suggests that one can build new solutions out of known solutions, even though
the Korteweg-de Vries equation (5.1.1) is non-linear. This is indeed the case, we refer to [2],
[6] for more information.

Remark 5.5.2. It is more generally true that a solution which exhibits a solitary wave in
its solution for t � 0, then the speed of this solitary wave equals −4λ for some λ < 0 in the
discrete spectrum of the corresponding Schrödinger operator.

Remark 5.5.3. It is clear that forN ≥ 3 the calculations become more and more cumbersome.
There is a more unified treatment of soliton solutions possible, using the so-called τ -functions.
For an introduction of these aspects of the KdV-equation in relation also to vertex algebras
one can consult [8].
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Figure 5.2: N = 2-soliton solution for t = −1, t = −0.5, t = −0.2 (first row), t = −0.05,
t = 0, t = 0.05 (second row) and t = 0.2, t = 0.5, t = 1 (third row).
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Chapter 6

Preliminaries and results from
functional analysis

In this Chapter we recall several notions from functional analysis in order to fix notations
and to recall standard results. The results can be found in Lax [7], Werner [11] and most of
them in the course notes for Advanced Functional Analysis (wi4203). Some of the statements
are equipped with a proof, notably in Section 6.5 for the description of the spectrum and the
essential spectrum.

6.1 Hilbert spaces

A Banach1 space X is a vector space (over C) equipped with a norm, i.e. a mapping ‖·‖ : X →
R such that

• ‖αx‖ = |α| ‖x‖, ∀α ∈ C, ∀x ∈ X ,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X , (triangle inequality)

• ‖x‖ = 0 ⇐⇒ x = 0,

such that X is complete with respect to the metric topology induced by d(x, y) = ‖x − y‖.
Completeness means that any Cauchy2 sequence, i.e. a sequence {xn}∞n=1 in X such that
∀ε > 0 ∃N ∈ N ∀n,m ≥ N ‖xn−xm‖ < ε, converges in X to some element x ∈ X , i.e. ∀ε > 0
∃N ∈ N ∀n ≥ N ‖xn − x‖ < ε. If xn → x in X , then ‖xn‖ → ‖x‖.

An inner product on a vector space H is a mapping 〈·, ·〉 : H×H → C such that

• 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 ∀α, β ∈ C, ∀x, y, z ∈ H,

• 〈x, y〉 = 〈y, x〉, ∀x, y ∈ H,

1Stefan Banach (30 March 1892 — 31 August 1945), Polish mathematician, who is one of the founding
fathers of functional analysis.

2Augustin Louis Cauchy (21 August 1789 — 23 May 1857), French mathematician.
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• 〈x, x〉 ≥ 0 ∀x ∈ H and 〈x, x〉 = 0 ⇐⇒ x = 0.

It can be shown that ‖x‖ =
√
〈x, x〉 induces a norm on H, and we call H a Hilbert3 space if

it is complete. The standard inequality is the Cauchy-Schwarz4 inequality;

|〈x, y〉| ≤ ‖x‖ ‖y‖. (6.1.1)

A linear map φ : H → C on a Hilbert space H, also known as a functional, is continuous
if and only if |φ(x)| ≤ C‖x‖ for some constant C. Note that (6.1.1) implies that x 7→ 〈x, y〉 is
continuous. The Riesz5 representation theorem states that any continuous functional φ : H →
C is of this form, i.e. ∃y ∈ H such that φ(x) = 〈x, y〉. A sequence {xn}∞n=1 in H is weakly
convergent to x ∈ H if limn→∞〈xn, y〉 = 〈x, y〉, ∀y ∈ H. By the Cauchy-Schwarz inequality
(6.1.1) we see that convergence in H, i.e. with respect to the norm, implies weak convergence.
The converse is not true in general. In general, a bounded sequence in a Hilbert space does
not need have a convergent subsequence (e.g. take any orthonormal sequence {xn}∞n=1 in an
infinite dimensional Hilbert space, since then ‖xn‖ = 1 and ‖xn − xm‖ =

√
2, n 6= m, by

the Pythagorean6 theorem), but it has a weakly convergent subsequence (e.g. in the example
xn → 0 weakly). This is known as weak compactness.

Exercise 6.1.1. In this exercise we sketch a proof of the weak compactness of a Hilbert space
H. Let {xn}∞n=1 be a bounded sequence, say ‖xn‖ ≤ 1. We have to show that there exists a
subsequence {xnk

}∞k=1 and a x ∈ H such that limk→∞〈xnk
, y〉 = 〈x, y〉 for all y ∈ H.

• Fix m, and use |〈xn, xm〉| ≤ 1 to find a subsequence {xni
}ni=1 such that 〈xni

, xm〉 con-
verges as i→∞.

• Use a diagonalization trick to find a subsequence, say {yn}∞n=1 such that 〈yn, xm〉 con-
verges for all m as n→∞. Conclude that 〈yn, u〉 converges for all u in the linear span
U of the elements xn, n ∈ N.

• Show that 〈yn, u〉 converges for all u in the closure U of the linear span U

• By writing an arbitrary w ∈ H as w = u+z, u ∈ U , z ∈ U⊥, show that 〈yn, w〉 converges
for all w ∈ H as n→∞.

• Define φ : H → C as φ(w) = limn→∞〈yn, w〉. Show that φ is a continuous linear func-
tional.

• Use the Riesz representation theorem to find x ∈ H such that the subsequence {yn}∞n=1

converges weakly to x.

3David Hilbert (23 January 1862 —14 February 1943), German mathematician. Hilbert is well-known for
his list of problems presented at the ICM 1900, some still unsolved.

4Hermann Amandus Schwarz (25 January 1843 — 30 November 1921), German mathematician.
5Frigyes Riesz (22 January 1880 — 28 February 1956), Hungarian mathematician, who made many contri-

butions to functional analysis.
6Pythagoras of Samos (approximately 569 BC – 475 BC), Greek philosopher.
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Example 6.1.2. Using the Lebesgue7 integral, we put for 1 ≤ p <∞

Lp(R) = {f : R → C measurable |
∫

R
|f(x)|p dx <∞}.

This is a Banach space with respect to the norm ‖f‖p =
(∫

R |f(x)|p dx
)1/p

. The case p = ∞
is L∞(R) = {f : R → C measurable | ess supx∈R|f(x)| < ∞}, which is a Banach space for
the norm ‖f‖∞ = ess supx∈R|f(x)|. Here we follow the standard convention of identifying two
functions that are equal almost everywhere.

The case p = 2 gives a Hilbert space L2(R) with inner product given by

〈f, g〉 =

∫
R
f(x) g(x) dx

Since we work mainly with the Hilbert space L2(R), we put ‖f‖ = ‖f‖2. In this case the
Cauchy-Schwarz inequality states

∣∣∫
R
f(x)g(x) dx

∣∣ ≤ (∫
R
|f(x)|2 dx

) 1
2
(∫

R
|g(x)|2 dx

) 1
2

,

which is also known as Hölder’s inequality. The converse Hölder’s inequality states

sup
∣∣∫

R
f(x)g(x) dx

∣∣ = ‖f‖,

where the supremum is taken over all functions g such that ‖g‖ ≤ 1 and
∫

R f(x)g(x)dx exists.

We recall some basic facts from Lebesgue’s integration theory. We also recall that for a
convergent sequence {fn}∞n=1 to f in Lp(R), 1 ≤ p ≤ ∞ there exists a convergent subsequence
{fnk

}∞k=1 that converges pointwise almost everywhere to f .

Theorem 6.1.3 (Lebesgue’s Dominated Convergence Theorem). If {f}∞n=1 is a sequence of
measurable functions on R, such that fn → f pointwise almost everywhere on a measurable
set E ⊂ R. If there exists a function g integrable on E such that |fn| ≤ g almost everywhere
on E, then

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

The Dominated Convergence Theorem 6.1.3 is needed to show that the Lp(R) spaces are
complete. Another useful result is the following.

Theorem 6.1.4 (Lebesgue’s Differentiation Theorem). For f ∈ L1(R) its indefinite integral∫ x
−∞ f(y) dy is differentiable with derivative f(x) almost everywhere.

7Henri Lon Lebesgue (28 June 1875 — 26 July 1941), French mathematician, and inventor of modern
integration theory.
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A Banach space is separable if there exists a denumerable dense set. The examples Lp(R),
1 ≤ p < ∞, are separable, but L∞(R) is not separable. In these lecture notes the Hilbert
spaces are assumed to be separable.

Another example of a Banach space is C(R), the space of continuous functions f : R → C
with respect to the supremum norm, ‖f‖∞ = supx∈R |f(x)|. The Arzelà-Ascoli8 theorem
states that M ⊂ C(R) with the properties (i) M bounded, (ii) M closed, (iii) M is uniformly
continuous (i.e. ∀ε > 0 ∃δ > 0 ∀f ∈M : |x− y| < δ ⇒ |f(x)− f(y)| < ε), then M is compact
in C(R).

6.2 Operators

An operator is a linear map T from its domain D(T ), a linear subspace of a Banach space X ,
to a Banach space Y , denoted by T : X ⊃ D(T ) → Y or by T : D(T ) → Y or by (T,D(T )) if
X and Y are clear from the context, or simply by T . We say that (T,D(T )) is an extension of
(S,D(S)), in notation S ⊂ T , if D(S) ⊂ D(T ) and Sx = Tx for all x ∈ D(S). Two operators
S and T are equal if S ⊂ T and T ⊂ S, so that in particular the domains have to be equal.
By Ker(T ) we denote the kernel of T , Ker(T ) = {x ∈ D(T ) | Tx = 0}, and by Ran(T ) we
denote its range, Ran(T ) = {y ∈ Y | ∃x ∈ D(T ) such that Tx = y}.

The operator (T,D(T )) is densely defined if the closure of its domain is the whole Banach
space, D(T ) = X . We define the sum of two operators S and T by (S + T )x = Sx + Tx for
x ∈ D(T +S) = D(T )∩D(S), and the composition is defined as (ST )x = S(Tx) with domain
D(ST ) = {x ∈ D(T ) | Tx ∈ D(S)}. Note that it might happen that the domains of the sum
or composition are trivial, even if S and T are densely defined.

A linear operator T : X → Y is continuous if and only if T is bounded, i.e. there exists a
constant C such that ‖Tx‖ ≤ C‖x‖ for all x ∈ X . The operator norm is defined by

‖T‖ = sup
x∈X

‖Tx‖
‖x‖

and the space B(X ,Y) = {T : X → Y | T bounded} is a Banach space with respect to
the operator norm ‖T‖. (In the course notes for Applied Functional Analysis (wi4203) this
is denoted by BL(X ,Y).) If (T,D(T )) is densely defined and ∃C such that ‖Tx‖ ≤ C‖x‖
∀x ∈ D(T ), then T can be extended uniquely to a bounded operator T : X → Y with ‖T‖ ≤ C.
We put B(X ) = B(X ,X ). For an operator T ∈ B(X ) with operator norm ‖T‖ < 1, we check
that

∑∞
n=0 T

n converges with respect to the operator norm and this gives an inverse to 1−T ,
where 1 ∈ B(X ) is the identity operator x 7→ x. For Hilbert spaces we use apart from the
operator norm on B(H) also the strong operator topology, in which Tn →T if Tnx → Tx
for all x ∈ H, and the weak operator topology, in which Tn → T if 〈Tnx, y〉 → 〈Tx, y〉 for
all x, y ∈ H. Note that convergence in operator norm implies convergence in strong operator
topology, which in turn implies convergence in weak operator topology.

8Cesare Arzelà (6 March 1847 — 15 March 1912), Italian mathematician. Ascoli Italian mathematician.
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For T ∈ B(H), H Hilbert space, the adjoint operator T ∗ ∈ B(H) is defined by 〈Tx, y〉 =
〈x, T ∗y〉 for all x, y ∈ H. We call T ∈ B(H) a self-adjoint (bounded) operator if T ∗ = T .
T ∈ B(H) a unitary operator if T ∗T = 1 = TT ∗. An isometry is an operator T ∈ B(H), which
preserves norms; ‖Tx‖ = ‖x‖ for all x ∈ H. A surjective isometry is unitary. An orthogonal
projection is a self-adjoint operator P ∈ B(H) such that P 2 = P , so that P projects onto
Ran(P ), a closed subspace of H, or P |Ran(P ) is the identity and Ker(P ) = Ran(P )⊥, the
orthogonal complement. A partial isometry U ∈ B(H) is an element such that UU∗ and U∗U
are orthogonal projections. The range of the projection U∗U is the inital subspace, say D,
and the range of the projection UU∗ is the final subspace, say R, and we can consider U as a
unitary map from D to R.

An operator T : H ⊃ D(T ) → H is symmetric if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ D(T ). For
a densely defined operator (T,D(T )) we define

D(T ∗) = {x ∈ H | y 7→ 〈Ty, x〉 is continuous on D(T )}.

Since D(T ) is dense in H it follows that y 7→ 〈Ty, x〉 extends to a continuous functional on
H, which, by the Riesz representation theorem, is equal to y 7→ 〈Ty, x〉 = 〈y, z〉 for some
z ∈ H. Then we define T ∗x = z. An operator (T,D(T )) is self-adjoint if (T,D(T )) equals
(T ∗, D(T ∗)). So in particular, a self-adjoint operator is densely defined. Note that a densely
defined symmetric operator satisfies T ⊂ T ∗, and that a self-adjoint operator is symmetric,
but not conversely. For a self-adjoint operator (T,D(T )) we have 〈Tx, x〉 ∈ R for all x ∈ D(T ).
Note that the definition of self-adjointness coincides with the definition of self-adjointness in
case the operator T is bounded, since then D(T ) = H = D(T ∗).

We now switch back to operators from a Banach space X to a Banach space Y . An operator
K is compact if the closure of the image of the unit ball {x ∈ X | ‖x‖ ≤ 1} is compact in
Y , and we denote the compact operators by K(X ,Y). It follows that K(X ,Y) ⊂ B(X ,Y),
i.e. each compact operator is bounded. (In the course notes for Applied Functional Analysis
(wi4203) this is denoted by C.) Compactness can be restated as follows: for each bounded
sequence {xn}∞n=1 in X , the sequence {Kxn}∞n=1 has convergent subsequence. Any operator
with finite dimensional range is compact, we denote these operators by F (X ,Y). A typical
example is the rank one operator x 7→ 〈x, y〉 z for fixed y, z ∈ H, For a separable Hilbert space
H we have thatK(H) = K(H,H) is the operator norm closure of F (H) = F (H,H), andK(H)
is a closed two-sided ideal in B(H), i.e. K ∈ K(H) and S ∈ B(H) implies SK,KS ∈ K(H).

An operator T : X ⊃ D(T ) → Y is closed if for a sequence {xn}∞n=1 in D(T ) with the
properties that xn → x in X and Txn → y in Y we may conclude that x ∈ D(T ) and Tx = y.
This is equivalent to the assumption that the graph of T , i.e. G(T ) = {(x, Tx) | x ∈ D(T )} is
closed in X ×Y . An operator (T,D(T )) is closable if there exists a closed operator (S,D(S))
such that S extends T , T ⊂ S. The smallest (with respect to extensions) closed operator of
a closable operator is its closure, denoted (T̄ , D(T̄ )).

Theorem 6.2.1 (Closed Graph Theorem). A closed operator (T,D(T )) with D(T ) = X is
bounded, T ∈ B(X ).

A closed operator (T,D(T )) from one Hilbert space H1 to another Hilbert space H2 has
a polar decomposition, i.e. T = U |T |, where D(|T |) = D(T ) and (|T |, D(|T |)) is self-adjoint
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operator on H1 and U : H1 → H2 is a partial isometry with initial space (KerT )⊥ and final
space RanT . The condition KerT = Ker |T | determine U and |T | uniquely.

For an operator on a Hilbert space H we have that (T,D(T )) is closable if and only its
adjoint (T ∗, D(T ∗)) is densely defined and then its closure is (T ∗∗, D(T ∗∗)). In particular,
any densely defined symmetric operator is closable, its closure being T ∗∗. In particular, if
(T,D(T )) is self-adjoint, then it is a closed operator. For a closed, densely defined operator
(T,D(T )) on a Hilbert space H, the linear space D(T ) is a Hilbert space with respect to
〈x, y〉T = 〈x, y〉+ 〈Tx, Ty〉. The corresponding norm is the graph norm.

The following lemma gives necessary and sufficient conditions for a densely defined, closed,
symmetric operator (T,D(T )) to be a self-adjoint operator on the Hilbert space H.

Lemma 6.2.2. Let (T,D(T )) be densely defined, symmetric operator, then the following are
equivalent.

1. Its closure (T̄ , D(T̄ )) is a self-adjoint operator,

2. Ker(T ∗ + i) = {0} = Ker(T ∗ − i),

3. Ker(T ∗ − z) = {0} for all z ∈ C\R,

4. Ran(T + i) = H = Ran(T − i),

5. Ran(T − z) = H for all z ∈ C\R.

In case (T,D(T )) is closed, the spaces Ran(T ± i), Ran(T − z) are closed.

An densely defined, symmetric operator T (T,D(T )) whose closure is self-adjoint, is known
as an essentially self-adjoint operator. There is an abundance of positive self-adjoint operators,
where (T,D(T )) is a positive operator if 〈Tx, x〉 ≥ 0 for all x ∈ D(T ).

Lemma 6.2.3. Let (T,D(T )) be a closed, densely defined operator on H. Then T ∗T with its
domain D(T ∗T ) = {x ∈ D(T ) | Tx ∈ D(T ∗)} is a densely defined self-adjoint operator on H.
Moreover, this operator is positive and its spectrum σ(T ∗T ) ⊂ [0,∞).

See Section 6.4 for the definition of the spectrum.

6.3 Fourier transform and Sobolev spaces

For an integrable function f ∈ L1(R) we define its Fourier9 transform as

Ff(λ) = f̂(λ) =
1√
2π

∫
R
f(x) e−iλx dx. (6.3.1)

9Jean Baptiste Joseph Fourier (21 March 1768 — 16 May 1830), French mathematician, who invented
Fourier series, and used it to solve the heat equation.
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If f ′, f ∈ L1(R) we have, by integration by parts, F(f ′)(λ) = iλ(Ff)(λ), so the Fourier
transform intertwines differentiation and multiplication. The Riemann10-Lebesgue lemma
states that F : L1(R) → C0(R), where C0(R) is the space of continuous functions on R that
vanish at infinity. For f ∈ L1(R) such that Ff ∈ L1(R) we have the Fourier inversion formula
f(x) = 1√

2π

∫
R(Ff)(λ) eiλx dλ. We put

F−1f(λ) = f̌(λ) =
1√
2π

∫
R
f(x) eiλx dx.

For f ∈ L2(R) ∩ L1(R) one can show that
∫ n
−n f(x)e±iλx dx converges in L2(R)-norm as

n→∞. This defines F ,F−1 : L2(R) → L2(R), and then Parseval’s11 identity holds;

〈f, g〉 = 〈Ff,Fg〉. (6.3.2)

In particular, F : L2(R) → L2(R) is unitary, ‖Ff‖ = ‖f‖, which is Plancherel’s12 identity.
Using the Fourier transform we define the Sobolev13 space

Wm(R) = {f ∈ L2(R) | λ 7→ (iλ)p(Ff)(λ) ∈ L2(R), ∀p ∈ {0, 1, 2, · · · ,m} } (6.3.3)

The Sobolev space is a Hilbert space for the inner product

〈f, g〉Wm(R) =
m∑
p=0

〈(iλ)p(Ff), (iλ)p(Fg)〉L2(R).

We can also define the Sobolev space using weak derivatives . We say that f ∈ L2(R) has
a weak derivative of order p ∈ N in case C∞

c (R) 3 φ 7→ (−1)p〈f, dpφ
dxp 〉 is continuous (as a

functional on the Hilbert space L2(R)). Here C∞
c (R) is the space of infinitely many times

differentiable functions having compact support. This space is dense in Lp(R), 1 ≤ p < ∞.
By the Riesz representation theorem there exists g ∈ L2(R) such that 〈g, φ〉 = (−1)p〈f, dpφ

dxp 〉,
and we define the p-th weak derivative of f as Dpf = g. Then one can show that

Wm(R) = {f ∈ L2(R) | Dpf ∈ L2(R) exists,∀p ∈ {0, 1, 2, · · · ,m}},

〈f, g〉Wm(R) =
m∑
p=0

〈Dpf,Dpg〉L2(R)

By abuse of notation we put f ′ = Df , f ′′ = D2f , etc. for weak derivatives.
Note that C∞

c (R) ⊂ Wm(R), and since C∞
c (R) is dense in L2(R), it follows that the Sobolev

spaces Wm(R) are dense in L2(R).

10Georg Friedrich Bernhard Riemann (17 September 1826 — 20 July 1866), German mathematician, who
made important contributions to many different areas of mathematics, and posed the Riemann hypothesis,
one of the most famous open problems.

11Marc-Antoine Parseval des Chênes (27 April 1755 — 16 August 1836), French mathematician.
12Michel Plancherel (16 January 1885 — 4 March 1967), Swiss mathematician.
13Sergei Lvovich Sobolev (6 October 1908 — 3 January 1989), Russian mathematician.
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Lemma 6.3.1 (Sobolev imbedding). For m, k ∈ N such that m > k + 1
2

we have Wm(R) ⊂
Ck(R), with Ck(R) the space of k-times continuous differentiable functions on R.

Note that this means, that f ∈ Wm(R) can be identified with a function in Ck after
changing it on a set of measure zero. In fact this inclusion is even continuous, and a proof for
the case m = 2, k = 1 is given in the proof of Theorem 2.3.4.

We also require a classical theorem of Paley and Wiener concerning the Fourier transform
A function analytic in the open complex upper half plane is an element of the Hardy14 class
H+

2 if

C = sup
y>0

(∫
R
|f(x+ iy)|2 dx

)1/2

<∞.

Then C is the corresponding H+
2 -norm of f .

Theorem 6.3.2 (Paley15-Wiener16). f ∈ H+
2 if and only f is the inverse Fourier transform

of F ∈ L2(R) with supp(F ) ⊂ [0,∞),

f(z) =
1√
2π

∫ ∞

0

F (λ)eizλ dλ, z ∈ C, =z > 0.

Moreover, the following Plancherel formula holds;∫ ∞

0

|F (λ)|2 dλ = sup
y>0

∫
R
|f(x+ iy)|2 dx,

i.e. the L2-norm of F is the H+
2 -norm of f , and limb↓0 f(·+ ib) = F−1F in L2(R).

Proof. First, if f is the inverse Fourier transform of F supported on [0,∞), then f is an
analytic function in the open upper half plane since, writing z = a+ ib,

f(z) = f(a+ ib) =
1√
2π

∫ ∞

0

F (λ)e−bλeiaλ dλ

and this integral converges absolutely in the open upper half plane. Then
∫
C
f(z) dz = 0 for

any closed curve in the open upper half plane by interchanging integrations and eiλz being
analytic. So f is analytic by Morera’s theorem. By the Plancherel identity we have

sup
b>0

‖a 7→ f(a+ ib)‖ = sup
b>0

‖x 7→ e−bλF (λ)‖ = ‖F‖,

14Godfrey Harold Hardy (7 February 1877 – 1 December 1947), English mathematician, also famous for his
quote “There is no permanent place in the world for ugly mathematics.”.

15Raymond Edward Alan Christopher Paley (7 January 1907 — 7 April 1933), English mathematician,
killed by an avalanche while skiing during his visit to Wiener.

16Norbert Wiener (26 November 1894 — 18 March 1964), American mathematician, who made numerous
contributions to different areas in mathematics.
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and

‖f(·+ ib)−F−1F‖2 = ‖F−1
(
λ 7→ (1− e−bλ)F (λ)

)
‖2 =

∫ ∞

0

(1− e−bλ)2 |F (λ)|2 dλ→ 0,

as b ↓ 0 by the Dominated Convergence Theorem 6.1.3.
To finish the proof, we have to show that any element f in the Hardy class H+

2 can be
written in this way. Define fb(x) = f(x + ib), i.e. the function restricted to the line =z = b.
Then fb ∈ L2(R), and ‖fb‖ ≤ C independent of b. Consider

ebλF(fb)(λ) =
ebλ√
2π

∫
R
e−iλxfb(x) dx =

1√
2π

∫
R
e−iλ(x+ib)fb(x) dx =

1√
2π

∫
=z=b

e−iλzf(z) dz

We claim that this expression is independent of b > 0 as functions in L2(R). Assuming this
claim is true, we define F (λ) = ebλF(fb)(λ), then∫

R
e−2bλ|F (λ)|2 dλ = ‖e−bλF‖2 = ‖Ffb‖2 = ‖fb‖2 ≤ C2

independent of b. From this we can observe the following; (i) F (λ) = 0 for λ < 0 (almost
everywhere) by considering b → ∞, (ii) F ∈ L2(R) by taking the limit b ↓ 0, and (iii), as
identity in L2(R),

f(z) = f(a+ ib) = fb(a) = F−1
(
Ffb

)
(a) =

1√
2π

∫ ∞

0

eiλa(Ffb)(λ) dλ

=
1√
2π

∫ ∞

0

eiλae−bλF (λ) dλ =
1√
2π

∫ ∞

0

eiλzF (λ) dλ.

The proof of the claim is as follows. Let Cα, α > 0, be the rectangle with vertices at ±α+ i
and ±α+ ib, then

∫
Cα
e−iλzf(z) dz = 0 by analyticity of the integrand in the open upper half

plane. Put I(α) =
∫ α+ib

α+i
e−iλzf(z) dz in case b > 1 (the other case is similar). Then

|I(α)|2 = |i
∫ b

1

e−iλ(α+it)f(α+ it) dt|2 ≤
∫ b

1

|f(α+ it)|2 dt
∫ b

1

e2tλ dt,

where the first integral is independent of λ. Since f ∈ H+
2 it follows∫

R

(∫ b

1

|f(α+ it)|2 dt
)
dα =

∫ b

1

∫
R
|f(α+ it)|2 dα dt ≤ C2 |b− 1|,

with C the Hardy space norm of f . Or α 7→ G(α) =
∫ b

1
|f(α+ it)|2 dt is in L1(R), there exist

sequence βn →∞ and γn → −∞ such that G(βn) → 0 and G(γn) → 0, and hence I(βn) → 0
and I(γn) → 0. Note that these sequences are independent of λ by the estimate above. We
now define

gn(b, λ) =
1√
2π

∫ βn

γn

f(x+ ib) e−iλx dx,
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so that

lim
n→∞

eλbgn(b, λ)− eλgn(1, λ) = 0.

By the Plancherel theorem we have limn→∞ ‖F(fb) − gn(b, ·)‖ = 0, so that we can find a
subsequence of {gn(b, ·)}∞n=1 that converges pointwise to F(fb) almost everywhere, and by
restricting the previous limit to this subsequence we see that ebλF(fb)(λ) is independent of b
as claimed.

In the last part of the proof we have used the fact that if {fn} is a Cauchy sequence in
L2(R) converging to f ∈ L2(R), then there exists a subsequence {fnk

} such that fnk
→ f ,

k →∞, pointwise almost everywhere.

6.4 Spectral theorem

We consider densely defined operators (T,D(T )) on a Hilbert space H. Then z ∈ C is in the
resolvent set if T − z is invertible in B(H), i.e. there exists a bounded linear operator R(z;T )
such that R(z;T ) : H → D(T ) ⊂ H such that R(z;T )(T − z) ⊂ (T − z)R(z;T ) = 1. Note
that this implies T − z to be a bijection D(T ) → H. The resolvent set is denoted by ρ(T ),
and its complement σ(T ) is its spectrum. The spectrum is always closed in C. If for λ ∈ C
there exists an element x ∈ D(T ) ⊂ H such that Tx = λx, then we say that λ ∈ σp(T ), point
spectrum, and σp(T ) ⊂ σ(T ). Then x is an eigenvector for the eigenvalue λ ∈ σp(T ).

For (T,D(T )) a self-adjoint operator we have σ(T ) ⊂ R, and for a positive self-adjoint
operator we have σ(T ) ⊂ [0,∞).

Recall that a σ-algebra on a space X is a collection M of subsets of X, such that (i)
X ∈ M, (ii) for A ∈ M its complement Ac = X\A ∈ M (iii) if Ai ∈ M then ∪∞n=1Ai ∈ M.
The Borel sets on R are the smallest σ-algebra that contain all open intervals. A (positive)
measure is a map µ : M→ [0,∞] such that µ is countably additive, i.e. for all sets Ai ∈ M
with Ai∩Aj = ∅ for i 6= j we have µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai). A complex measure is a countably

additive map µ : M→ C.
For the Spectral Theorem 6.4.1 we need the notion of spectral measure, which is a orthog-

onal projection valued measure on the Borel17 sets of R. So, denoting the spectral measure
by E, this means that for any Borel set A ⊂ R, E(A) ∈ B(H) is an orthogonal projection
such that E(∅) = 0, E(R) = 1 (the identity element of B(H)) and for pairwise disjoint Borel
sets A1, A2, · · · we have

∞∑
i=1

E(Ai)x = E(∪∞i=1Ai)x, ∀x ∈ H.

This can be restated as that the series
∑∞

i=1E(Ai) converges in the strong operator topology
of B(H) to E(∪∞i=1Ai). One can show that e.g. E(A ∩B) = E(A)E(B).

17Félix Edouard Justin Émile Borel (7 January 1871 — 3 February 1956), French mathematician.
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In particular, for E a spectral measure and x, y ∈ H we can define a complex-valued Borel
measure Ex,y on R by Ex,y(A) = 〈E(A)x, y〉 for A ⊂ R a Borel set. Note that Ex,x(A) is a
positive Borel measure, since E(A) = E(A)2 = E(A)∗;

Ex,x(A) = 〈E(A)x, x〉 = 〈E(A)2x, x〉 = 〈E(A)x,E(A)x〉 = ‖E(A)x‖2 ≥ 0.

Theorem 6.4.1 (Spectral Theorem). Let (T,D(T )) be a self-adjoint operator on a Hilbert
space H. Then there exists a uniquely determined spectral measure E such that

〈Tx, y〉 =

∫
R
λ dEx,y(λ), ∀x ∈ D(T ), ∀y ∈ H,

and the support of dEx,y is contained in the spectrum σ(T ). For any bounded measurable
function f there is a uniquely defined operator f(T ) defined by

〈f(T )x, y〉 =

∫
R
f(λ) dEx,y(λ),

such that the map B(R) 3 f 7→ f(T ) ∈ B(H) is a ∗-algebra homomorphim from the space
B(R) of bounded measurable functions to the space of bounded linear operators, i.e. (fg)(T ) =
f(T )g(T ), (af + bg)(T ) = af(T ) + bg(T ), f̄(T ) = f(T )∗, for all f, g ∈ B(R), a, b ∈ C, and
where f̄(x) = f(x). Moreover, for a measurable real-valued function f : R → R define

D = {x ∈ H |
∫

R
|f(λ)|2 dEx,x(λ) <∞},

〈f(T )x, y〉 =

∫
R
f(λ) dEx,y(λ),

then (f(T ), D) is a self-adjoint operator. Moreover, S ∈ B(H) commutes with T , ST ⊂ TS,
if and only if S commutes with all spectral projections E(A), A Borel set of R.

The map f 7→ f(T ) is known as the functional calculus for bounded measurable functions.
This can be extended to unbounded measurable functions. All integrals can be restricted to
the spectrum σ(T ), i.e. the spectral measure is supported on the spectrum.

The Spectral Theorem 6.4.1 in particular characterises the domain in terms of the spectral
measure, since

D(T ) = {x ∈ H |
∫

R
λ2 dEx,x(λ) <∞}.

Note also that ‖f(T )x‖2 =
∫

R |f(λ)|2 dEx,x(λ) ≥ 0 since Ex,x is a positive measure.
In particular, it follows from the Spectral Theorem 6.4.1, that for a self-adjoint (T,D(T ))

on the Hilbert space H and the function exp(−itx), t ∈ R, we get a bounded operator U(t) =
exp(−itT ). From the functional calculus it follows immediately that U(t + s) = U(t)U(s),
U(0) = 1, U(t)∗ = U(−t), so that t 7→ U(t) is a 1-parameter group of unitary operators in
B(H). Stone’s18 Theorem 6.4.2 states that the converse is also valid.

18Marshall Harvey Stone (8 April 1903 — 9 January 1989), American mathematician.
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Theorem 6.4.2 (Stone). Assume R 3 t 7→ U(t) is a 1-parameter group of unitary operators,
i.e. U(s)U(t) = U(s + t) for all s, t ∈ R, and U(t) is a unitary operator in B(H) for each
t ∈ R. Assume moreover that R 3 t 7→ U(t)x ∈ H is continuous for all x ∈ H. Then there
exists a unique self-adjoint operator (T,D(T )) such that U(t) = exp(−itT ), and the operator
T is defined by

D(T ) = {x ∈ H | lim
t→0

U(t)x− x

t
converges} Tx = i lim

t→0

U(t)x− x

t
, x ∈ D(T ).

U(t) as in Stone’s Theorem 6.4.2 is called a strongly continuous 1-parameter group of
unitary operators.

6.5 Spectrum and essential spectrum for self-adjoint

operators

In this subsection we recall some facts that are usually not parts of a standard course in
functional analysis. So we provide some of the statements of proofs.

We start with characterising the spectrum of a self-adjoint operator. Theorem 6.5.1 can
be extended to normal operators.

Theorem 6.5.1. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H, and λ ∈ R.
Then λ ∈ σ(T ) if and only if the following condition holds: ∃ sequence {xn}∞n=1 in D(T ) such
that

1. ‖xn‖ = 1,

2. lim
n→∞

(T − λ)xn = 0.

In particular, for λ ∈ σp(T ) we can take the sequence constant xn = x with x an eigenvector
of norm one for the eigenvalue λ. In general, for a closed operator (T,D(T )) we say that λ
is in the approximate point spectrum if there exists a sequence {xn}∞n=1 in D(T ) such that
‖xn‖ = 1 and limn→∞(T −λ)xn = 0. Theorem 6.5.1 states that for a self-adjoint operator the
approximate point spectrum is its spectrum.

Proof. Let us first assume that such a sequence exists. We have to prove that λ ∈ σ(T ).
Suppose not, then λ is element of the resolvent, and so there exists R(λ;T ) ∈ B(H) such that
R(λ;T )(T − λ) ⊂ 1. So

1 = ‖xn‖ = ‖R(λ;T )(T − λ)xn‖ ≤ ‖R(λ;T )‖ ‖(T − λ)xn‖

and since ‖R(λ;T )‖ is independent of n, the right hand side can be made arbitrarily small
since (T − λ)xn → 0. This is a contradiction, so that λ /∈ ρ(T ), or λ ∈ σ(T ). Note that this
implication is independent of (T,D(T )) being self-adjoint.
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We prove the converse statement by negating it. So we assume such a sequence does not
exist, and we have to show that λ ∈ ρ(T ). First we claim that there exists a C > 0 such that

‖x‖ ≤ ‖(T − λ)x‖ ∀x ∈ D(T ). (6.5.1)

To see why (6.5.1) is true, we assume that there exists a sequence {yn}∞n=1 in D(T ) such that

‖yn‖
‖(T − λ)yn‖

→ ∞, n→∞.

Putting xn = yn/‖yn‖, noting that yn 6= 0, this gives ‖xn‖ = 1 and ‖xn‖
‖(T−λ)xn‖ → ∞, so

‖(T − λ)xn‖ → 0, which is precisely the statement whose negation we assume to be true.
As an immediate corollary to (6.5.1) we see that T − λ is injective. Indeed, assume

(T − λ)x1 = y = (T − λ)x2, then 0 = ‖y − y‖ = C‖(T − λ)(x1 − x2)‖ ≥ ‖x1 − x2‖ ≥ 0 and
‖x1 − x2‖ = 0 or x1 = x2.

Another consequence of (6.5.1) is Ran(T −λ) is closed. Indeed, take any sequence {yn}∞n=1

in Ran(T − λ), and assume yn → y in H. We need to show that y ∈ Ran(T − λ). By the
previous observation we can pick unique xn ∈ D(T ) with (T − λ)xn = yn. Then (6.5.1) and
yn → y imply that {xn}∞n=1 is a Cauchy sequence, hence convergent to, say, x ∈ H. For any
z ∈ D(T ) we have

〈(T − λ)z, x〉 = lim
n→∞

〈(T − λ)z, xn〉 = lim
n→∞

〈z, (T − λ)xn〉 = lim
n→∞

〈z, yn〉 = 〈z, y〉

since xn ∈ D(T ∗) = D(T ) and λ ∈ R. This implies by definition that x ∈ D((T − λ)∗) =
D(T ∗) = D(T ) and that (T − λ)∗x = y, or (T − λ)x = y, or y ∈ Ran(T − λ).

Summarising, T−λ is an injective map onto the closed subspace Ran(T−λ). We now show
that Ran(T − λ) is the whole Hilbert space H. Fix an element z ∈ H. We define a functional
φ : Ran(T − λ) → C by φ(y) = 〈x, z〉 with x ∈ D(T ) uniquely defined by (T − λ)x = y. Then
φ is indeed linear. Using (6.5.1) and the Cauchy-Schwarz inequality (6.1.1) we see

|φ(y)| = |〈x, z〉| ≤ ‖x‖ ‖z‖ ≤ C ‖(T − λ)x‖ ‖z‖ = C ‖y‖ ‖z‖

or φ is a continuous linear functional on Ran(T−λ) as a closed subspace ofH, so that the Riesz
representation theorem gives φ(y) = 〈y, w〉 for some w ∈ H. This is 〈(T − λ)x,w〉 = 〈x, z〉
and since this is true for all x ∈ D(T ) we see that w ∈ D((T − λ)∗) = D(T ∗) = D(T ) and
z = (T −λ)∗w = (T −λ)w since T is self-adjoint and λ ∈ R. This shows that z ∈ Ran(T −λ),
and since z ∈ H is arbitrary, it follows that Ran(T − λ) = H as claimed.

So now we have T − λ as an injective map from D(T ) to H = Ran(T − λ), and we can
define its inverse (T − λ)−1 as a map from H to D(T ). Now (6.5.1) implies that (T − λ)−1 is
bounded, hence (T − λ)−1 ∈ B(H) and so λ ∈ ρ(T ).

The Spectral Theorem 6.4.1 for the case of a compact operator is well-known, and we recall
it. (See Theorem 16.1.4 of the lecture notes for Applied Functional Analysis (wi4203).)
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Theorem 6.5.2 (Spectral theorem for compact operators). Let K ∈ K(H) be self-adjoint.
Then its spectrum is a denumerable set in R with 0 as the only possible point of accumulation.
Each non-zero point in the spectrum is an eigenvalue of K, and the corresponding eigenspace is
finite dimensional. Denoting the spectrum by |λ1| ≥ |λ2| ≥ |λ3| · · · (each λ ∈ σ(K) occurring
as many times as dim(Ker(K − λ))) and {ei}i≥1, ‖ei‖ = 1, the corresponding eigenvectors,
then

H = Ker(K)⊕
⊕
i≥1

C ei, Kx =
∑
i≥1

λi 〈x, ei〉 ei.

The essential spectrum of a self-adjoint operator is the part of the spectrum that is not
influenced by compact perturbations. Suppose e.g. that λ ∈ σp(T ) with corresponding eigen-
vector e such that the self-adjoint operator x 7→ Tx − λ〈x, e〉e has λ in its resolvent, then
we see that this part of the spectrum is influenced by a compact (in this case even rank-one)
perturbation. The definition of the essential spectrum is as follows.

Definition 6.5.3. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H, then the
essential spectrum is

σess(T ) =
⋂

K∈K(H), K∗=K

σ(T +K).

Obviously, σess(T ) ⊂ σ(T ) by taking K equal to the zero operator. Also note that the
essential spectrum only makes sense for infinite dimensional Hilbert spaces. For H finite
dimensional the essential spectrum of any self-adjoint operator is empty.

Theorem 6.5.4. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H, and take
λ ∈ R. Then the following statements are equivalent

1. λ ∈ σess(T )

2. ∃ a sequence {xn}∞n=1 in the domain D(T ) such that

• ‖xn‖ = 1,

• {xn}∞n=1 has no convergent subsequence,

• (T − λ)xn → 0,

3. ∃ a sequence {xn}∞n=1 in the domain D(T ) such that

• ‖xn‖ = 1,

• xn → 0 weakly,

• (T − λ)xn → 0.

Proof. (3) ⇒ (2): Assume that {xn}∞n=1 has a convergent subsequence, we relabel and we can
assume that the sequence converges to x. Since ‖xn‖ = 1, we have ‖x‖ = 1. Since xn → x
we also have xn → x weakly, and since also xn → 0 weakly we must have x = 0 contradicting
‖x‖ = 1.
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(2) ⇒ (3): Since ‖xn‖ = 1 is a bounded sequence, it has a weakly convergent subsequence,
which, by relabeling, may be assumed to be the original sequence, see Exercise 6.1.1. Denote
its weak limit by x. Since by assumption there is no convergent subsequence, there exists
δ > 0 so that ‖xn−x‖ ≥ δ for all n ∈ N. Since the sequence is from D(T ), the self-adjointness
implies

〈(T − λ)y, xn〉 = 〈y, (T − λ)xn〉

for all y ∈ D(T ). Since (T − λ)xn → 0 and xn → x weakly we find by taking n → ∞ that
〈(T − λ)y, x〉 = 0 for all y ∈ D(T ). Since this is obviously continuous as a functional in y, we
see that x ∈ D((T − λ)∗) = D(T ), since T is self-adjoint, and that (T − λ)∗x = (T − λ)x = 0.

We now define zn = (xn − x)/‖xn − x‖, which can be done since ‖xn − x‖ ≥ δ > 0. Then
by construction ‖zn‖ = 1 and zn → 0 weakly. Moreover, since x ∈ Ker(T − λ),

‖(T − λ)zn‖ =
1

‖xn − x‖
‖(T − λ)xn‖ ≤

1

δ
‖(T − λ)xn‖ → 0.

So the sequence {zn}∞n=1 satisfies the conditions of (3).
(2) ⇒ (1): We prove the negation of this statement. Assume λ /∈ σess(T ), and let K be a

self-adjoint compact operator such that λ ∈ ρ(T + K). So in particular R(λ;T + K) : H →
D(T +K) = D(T ) is bounded, or

‖R(λ;T +K)x‖ ≤ ‖R(λ;T +K)‖ ‖x‖
=⇒‖y‖ ≤ ‖R(λ;T +K)‖ ‖(T +K − λ)y‖

by switching x to (T+K−λ)y, y ∈ D(T ) arbitrary. Now take any sequence {xn}∞n=1 satisfying
the first and last condition of (2). Then by the above observation, with C = ‖R(λ;T +K)‖,

‖xn − xm‖ ≤C ‖(T +K − λ)(xn − xm)‖
≤C ‖(T − λ)xn‖+ C ‖(T − λ)xm‖+ C ‖K(xn − xm)‖

and the first two terms on the right hand side tend to zero by assumption. Since K is compact,
and the sequence {x}∞n=1 is bounded by 1 there is a convergent subsequence of {Kxn}∞n=1. By
relabeling we may assume that the sequence {Kxn}∞n=1 is convergent, and then the final term
on the right hand side tends to zero. This means that {xn}∞n=1 is a Cauchy sequence, hence
convergent. So the three conditions in (2) cannot hold.

(1) ⇒ (2) We consider two possibilities; dim Ker(T − λ) <∞ or dim Ker(T − λ) = ∞. In
the last case we pick an orthonormal basis {xn}∞n=1 of Ker(T − λ) ⊂ D(T ). Then obviously,
‖xn‖ = 1 and (T−λ)xn = 0 for all n, and this sequence cannot have a convergent subsequence,
since ‖xn − xm‖ =

√
2 by the Pythagorean theorem, cf. Section 6.1.

In the case Ker(T −λ) is finite-dimensional, we claim that there exists a sequence {xn}∞n=1

inD(T ) such that xn ⊥ Ker(T−λ), ‖xn‖ = 1 and (T−λ)xn → 0. Observe thatD(T )∩Ker(T−
λ)⊥ is dense in Ker(T − λ)⊥. Indeed, let P denote the orthogonal projection on Ker(T − λ)
and take arbitrary x ∈ Ker(T − λ)⊥, ε > 0, so that ∃y ∈ D(T ) such that ‖x− y‖ < ε. Write
y = Py + (1− P )y, then Py ∈ Ker(T − λ) ⊂ D(T ) so that with y ∈ D(T ) and D(T ) being a
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linear space, also (1− P )y ∈ D(T ). Now ‖x− (1− P )y‖ = ‖(1− P )(x− y)‖ ≤ ‖x− y‖ < ε,
so the density follows.

In order to see why the claim in the previous paragraph is true, note that P is self-adjoint
and, since this is a finite rank operator, P is compact. Note that T+P is a self-adjoint operator.
If such a sequence would not exist, then we can conclude, by restricting to Ker(T −λ)⊥, as in
the proof of Theorem 6.5.1, cf. (6.5.1), that there exists a C such that for all x ⊥ Ker(T −λ),
x ∈ D(T ) we have ‖x‖ ≤ C‖(T − λ)x‖. For x ∈ D(T ) ∩Ker(T − λ)⊥ we have

〈(T − λ)x, Px〉 = 〈x, (T − λ)Px〉 = 0,

so that, using this orthogonality in the last equality,

‖x‖2 = ‖(1− P )x‖2 + ‖Px‖2 ≤ C2‖(T − λ)x‖2 + ‖Px‖2

≤ max(C2, 1)
(
‖(T − λ)x‖2 + ‖Px‖2

)
= max(C2, 1) ‖(T + P − λ)x‖2.

This implies that T + P − λ has a bounded inverse, so that λ ∈ ρ(T + P ) or λ /∈ σess(T ).
Now the claim can be used to finish the proof as follows. We have to show that {xn}∞n=1

does not have a convergent subsequence. Suppose, that it does have a convergent subsequence,
which we denote by {xn}∞n=1 as well, and say that xn → x. Then ‖x‖ = 1, and x ∈ Ker(T−λ)⊥.
On the other hand, (T−λ)xn → 0, and since T is self-adjoint, hence closed, we see that T−λ is
closed. This means that x ∈ D(T ) and x ∈ Ker(T−λ). So x ∈ Ker(T−λ)∩Ker(T−λ)⊥ = {0},
which contradicts ‖x‖ = 1.

The essential spectrum can be obtained from the spectrum by “throwing out the point
spectrum”. Below we mean by an isolated point λ of a subset σ of R that there does not
exists a sequence {λn}∞n=1 of points in σ such that λn → λ in R.

Theorem 6.5.5. Let (T,D(T )) be a self-adjoint operator on a Hilbert space H. Then we have

1. If λ ∈ σ(T )\σess(T ), then λ is an isolated point in σ(T ).

2. If λ ∈ σ(T )\σess(T ), then λ ∈ σp(T ).

Proof. To prove the first statement assume that λ is not isolated in σ(T ), so there exists a
sequence {λn}∞n=1, λn 6= λ, λn ∈ σ(T ) and λn → λ. By invoking Theorem 6.5.1 we can find
for each n ∈ N a sequence {xni }∞i=1 such that ‖xni ‖ = 1 and (T − λn)x

n
i → 0 as i → ∞. By

restricting to the diagonal xn = xnn we get (T − λn)xn → 0 as n → ∞, and by restricting to
a subsequence, denoted again by {xn}∞n=1, we can assume that ‖(T − λn)xn‖ < 1

n
|λ− λn| for

n ∈ N. Then by construction ‖xn‖ = 1 and

‖(T − λ)xn‖ ≤ ‖(T − λn)xn‖+ |λ− λn‖‖x‖ < (1 +
1

n
) |λ− λn| → 0, n→∞,

In order to show that λ ∈ σess(T ), we can use Theorem 6.5.4. It suffices to show that the
constructed sequence {xn}∞n=1 has no convergent subsequence. So suppose it does have a



Chapter 6: Preliminaries and results from functional analysis 119

convergent subsequence, again denoted by {xn}∞n=1, say xn → x. Then ‖x‖ = 1, and by
closedness of T − λ, x ∈ D(T ) and x ∈ Ker(T − λ). On the other hand,

|(λ− λn)| |〈xn, x〉| = |〈xn, λx〉 − λn 〈xn, x〉| = |〈xn, Tx〉 − λn 〈xn, x〉|

= |〈(T − λn)xn, x〉| ≤
1

n
|λ− λn|

and since λ 6= λn we see that 〈xn, x〉 → 0. But by assumption 〈xn, x〉 → ‖x‖2 = 1, so this
give the required contradiction.

For the second statement we use Theorem 6.5.1 to get a sequence {xn}∞n=1 such that
‖xn‖ = 1 and (T − λ)xn → 0. Since λ /∈ σess(T ), Theorem 6.5.4 implies that this sequence
must have a convergent subsequence, again denoted {xn}∞n=1 with xn → x. Since T is self-
adjoint, T − λ is closed and hence x ∈ D(T ) and (T − λ)x = 0. Now ‖x‖ = 1 shows that
Ker(T − λ) is non-trivial.

6.6 Absolutely continuous and singular spectrum

Let λ denote Lebesgue measure restricted to the σ-algebra of the Borel sets on R. An arbitrary
measure in this Section is a finite complex measure. Recall that a measure µ is absolutely
continuous (with respect to Lebesgue measure λ) if for all Borel sets B with λ(B) = 0 we have
µ(B) = 0, and the measure µ is singular (with respect to Lebesgue measure λ) if there exists
a Borel set Z such that λ(Z) = 0 and µ(Zc) = 0, where Zc = R\Z is its complement in R. So
the singular measure is supported on Z. The Lebesgue Decomposition Theorem states that
any measure µ can be uniquely decomposed as µ = µac + µs with µac absolutely continuous
and µs singular. Knowing the support Z of the singular measure, the Lebesgue decomposition
is given by µs(B) = µ(B ∩ Z), µac(B) = µ(B ∩ Zc) for any Borel set B. Also, the sum
of two absolutely continuous, respectively singular, measures is again absolutely continuous,
respectively singular.

Recall that for a self-adjoint operator (T,D(T )) the Spectral Theorem 6.4.1 gives a finite
complex measure Ex,y for any pair x, y ∈ H by Ex,y(B) = 〈E(B)x, y〉, where E is the spectral
measure, and in case x = y we have that Ex,x is a positive measure.

Definition 6.6.1. Given a self-adjoint operator (T,D(T )) we define

Hac = Hac(T ) = {x ∈ H | Ex,x is absolutely continuous},
Hs = Hs(T ) = {x ∈ H | Ex,x is singular}.

Hac is the absolutely continuous subspace and Hs is the singular subspace.

We call x ∈ Hac an absolutely continuous element, and x ∈ Hs a singular element of H.

Theorem 6.6.2. Consider a self-adjoint operator (T,D(T )) on H, then

1. H = Hac ⊕Hs, so in particular Hac and Hs are closed subspaces,
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2. Hac and Hs reduce T .

Recall the definition of reducing spaces as in Definition 3.2.10 for the second statement.
Using Theorem 6.6.2(2) we can define the absolutely continuous spectrum of a self-adjoint
operator (T,D(T )) as σac(T ) = σ(T

∣∣
Hac

) and the singular spectrum σs(T ) = σ(T
∣∣
Hs

). Using

Theorem 6.6.2 it follows that σ(T ) = σac(T ) ∪ σs(T ).

Proof. First observe that, since E(B) is self-adjoint projection, we have

|〈E(B)x, y〉|2 ≤ 〈E(B)x, x〉 〈E(B)y, y〉 (6.6.1)

by the Cauchy-Schwarz inequality (6.1.1). Now (6.6.1) shows that for x ∈ Hac and any Borel
set B with λ(B) = 0 we also have 〈E(B)x, y〉 = 0, or Ex,y is absolutely continuous. If
x ∈ Hs we have a Borel set B such that λ(B) = 0 and Ex,x(B

c) = 0, and (6.6.1) implies that
Ex,y(B

c) = 0 as well, so Ex,y is singular as well.
Observe that Ecx,cx = |c|2Ex,x for any c ∈ C, so that with x also cx are in Hac, respectively

Hc. Next let x, y ∈ Hac, then for any Borel set B

Ex+y,x+y(B) = 〈E(B)(x+ y), x+ y〉 = 〈E(B)x, x〉+ 〈E(B)y, y〉+ 〈E(B)x, y〉+ 〈E(B)y, x〉

and the first two measures are absolutely continuous by assumption, and the last two are
absolutely continuous by the reasoning in the previous paragraph. So x+ y ∈ Hac. Similarly,
Hs is a linear space.

To see thatHac ⊥ Hs take x ∈ Hac, y ∈ Hs and consider the measure Ex,y. This measure is
absolutely continuous, since x ∈ Hac, and singular, since y ∈ Hs, so it has to be the measure
identically equal to zero. So 〈E(B)x, y〉 = 0 for all Borel sets B, and taking B = R and
recalling E(R) = 1 in B(H), we see that 〈x, y〉 = 0.

To finish the proof of the first statement we show that any element, say z ∈ H, can be
written as z = x + y with x ∈ Hac and y ∈ Hs. Use the Lebesgue decomposition theorem to
write Ez,z = µac + µs, and let Z be the Borel set such that λ(Z) = 0 and µc(Z

c) = 0. Put
x = E(Zc)z, y = E(Z)z, and it remains to show that these elements are the required ones.
First, x+ y = E(Z)z + E(Zc)z = E(R)z = z by additivity of the spectral measure. Next for
an abitrary Borel set B

Ex,x(B) = 〈E(B)x, x〉 = 〈E(B)E(Zc)z, E(Zc)z〉
= 〈E(Zc)E(B)E(Zc)z, z〉 = 〈E(B ∩ Zc)z, z〉 = Ez,z(B ∩ Zc),

so that Ex,x = µac and hence x ∈ Hac. Similarly, y ∈ Hs.
To prove the second statement, we take z ∈ D(T ) ⊂ H and write z = x + y, x ∈ Hac,

y ∈ Hc. We claim that x, y ∈ D(T ). To see this, recall that Ex,x, Ey,y and Ez,z are positive
measures satisfying Ez,z = Ex,x + Ey,y, so that∫

R
λ2 dEx,x(λ) ≤

∫
R
λ2 dEz,z <∞,
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implying that x ∈ D(T ) using the Spectral Theorem 6.4.1. Similarly, y ∈ D(T ). For x ∈
D(T ) ∩Hac, y ∈ H, we have, again by the Spectral Theorem 6.4.1,

ETx,y(B) =

∫
B

λ dEx,y, (6.6.2)

so that ETx,y is absolutely continuous with respect to Ex,y, in fact its Radon-Nikodym deriva-
tive is λ. Since Ex,y is absolutely continuous, it follows that ETx,Tx –take y = Tx– is absolutely
continuous, hence Tx ∈ Hac. We can reason in a similar way for the singular subspace Hs, or
we can use the first statement and T being self-adjoint to see that T : D(T ) ∩Hs → Hs.

In case T has an eigenvector x for the eigenvalue λ, then Ex,x is a measure with Ex,x({λ}) >
0 and Ex,x(R\{λ}) = 0. So in particular, all eigenspaces are contained in Hs. Define Hpp =
Hpp(T ) as the closed linear span of all eigenvectors of T , so that Hpp ⊂ Hc. Again, Hpp

reduces T . We denote by Hcs = Hcs(T ) the orthocomplement of Hpp in Hc, then Hcs also
reduces T . So we get the decomposition

H = Hpp ⊕Hcs ⊕Hac.

Here ‘pp’ stands for ‘pure point’ and ‘cs’ for ‘continuous singular’. Since these spaces reduce
T , we have corresponding spectra, σpp(T ) = σ(T

∣∣
Hpp

) and σsc(T ) = σ(T
∣∣
Hsc

). In general,

σpp(T ) is not equal to σp(T ), but σpp(T ) = σp(T ).
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