Contractive semigroups with nonlocal conditions

E.I. Galakhov & A.L. Skubachevskii Department of Differential Equations Moscow "S. Ordzhonikidze" Aviation Institute 125871 Moscow RUSSIA

skub@k803.mainet.msk.su

A problem of existence of contractive positive semigroups generated by elliptic operators with nonlocal conditions arises in the theory of diffusion processes (see [1]). This problem was studied in the case of differential operators of the second order in [2]. Consider an unbounded integro-differential operator of the form

$$Au(x) = \Delta u(x) + \int_{Q_x} [u(x+z) - u(x) - \nabla u(x) \cdot z] m(dz) \qquad (x \in Q),$$

where $Q \subset \mathbb{R}^n$ is a bounded domain, $\partial Q \in C^{\infty}$, $Q_x = \{z \in \mathbb{R}^n : x + z \in \overline{Q}\}$, and $m(\cdot)$ is a nonnegative Borel measure on Q_x such that

$$\int\limits_{Q_x\cap\{|z|\leq r\}}|z|^2m(dz)\to 0\quad (r\to 0),\quad \int\limits_{Q_x\cap\{|z|>r\}}|z|m(dz)<\infty\quad (r>0).$$

Consider a nonlocal boundary condition of the form

$$Bu(x) = \gamma(x)u(x) + \int_{\overline{Q}} [u(x) - u(y)]\mu(x, dy) = 0 \qquad (x \in \partial Q),$$

where $\gamma(x) \geq 0$, $\mu(x, \cdot)$ is a nonnegative Borel measure on \overline{Q} . Denote $C_B(\overline{Q}) = \{u \in C(\overline{Q}) : Bu = 0\}$. Define an operator $A_B : C_B(\overline{Q}) \to C_B(\overline{Q})$ by the formula $A_B u = Au \quad (u \in \mathcal{D}(A_B)), \quad \mathcal{D}(A_B) = \{u \in C^2(Q) \cap C_B(\overline{Q}) : Au \in C_B(\overline{Q})\}.$

If the measure $\mu(x,\cdot)$ satisfies certain geometrical conditions formulated in [2], then the following result is valid.

Theorem. The operator $\overline{A}_B: C_B(\overline{Q}) \to C_B(\overline{Q})$ is the infinitesimal generator of a contractive positive semigroup on $C_B(\overline{Q})$.

- [1] Taira K. Diffusion Processes and Partial Differential Equations, New York, London, Academic Press, 1988.
- [2] Galakhov E.I., Skubachevskii A.L., Matematicheskii Sbornik **165 (207)** (1998), 45–78; English transl. to appear in Math. Sb.