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In this talk the transient drift-diffusion model describing the charge transport in semiconductors is
considered.

Opr(t, x) = =V - jr(t, x) — R(z, pi(t, ), pa(t, 7)), (1)
Jk(t, w) = = Di()Vpr(t, w) — (=1)* () pi(t, 2)E(t, 7) (2)
for k € {1,2}
e(z)0E(t,z) = curl H(t, ) + jo(t, x) — j1(t, x) (3)
w(z)oH(t, z) = — curl E(t, z) (4)
div (e(z)E(t, z)) = p1(t, 2) — p2(t, z) + C(z), div (u(z)H(t, z)) =0 (5)

Here p1, p2 denote the charge densities and ji,ja denote the current densities of the holes and electrons
respectively.

The self-consistent electromagnetic field (E, H) obeys Maxwell’s equations 3, 4 and 5.

The unknown functions pi, p2, E, H depend on the time ¢ € IR and space variable x € )

Q) C IR? is a bounded Lipschitz-domain with 9Q = I'p Uy, where I'p, 'y are disjoint subsets of 9.

I'p represents the perfectly conducting Ohmic contacts and 'y represents the insulating boundary of the
semiconductor device. The mobilities p1, o of the holes and electrons resp. are assumed to be positive
constants. The diffusion coefficients D1, Doand the recombination generation rate R are functions of the
densities p1, p2 and the space variable x.

The system 2 - 5 is supplemented by suitable physically motivated initial boundary conditions.

Analysis of the drift diffusion model for semiconductors has been presented in [1] - [9] and [11]-[14] in the
case that Maxwell’s equations 3 - 5 are replaced by Poisson’s equation — div (eVV) = p; — po — C for an
electrostatic field E = —VV.

However, at very high frequencies the time dependent magnetic field generates a non curl-free electric field,
which cannot be written as the gradient of an electrostatic potential.

Therefore, Poisson’s equation has to be replaced by Maxwell’s equations 3, 4 - 5 for the electromagnetic
field. ;From the mathematical point of view this means that the elliptic Poisson equation is replaced by a
hyperbolic system, which complicates in particular the problem of uniqueness and regularity.

Global existence of weak solutions (p, E, H) to problem 1 - 5, with

p € Line([0,00), H'(2)) N L5,([0, 00), L*(2)) N C([0, 00), L*(2))

and (E,H) € C(]0, 00), L?(€)) is proved, see [6] and [9)].

Uniqueness and LP-regularity (p > 2) of weak solutions in the two-dimensional case is proved in [7].

The main question of this talk is the asymptotic behavior of weak solutions for ¢ — oo . For this purpose
assume that ¢ € H'(Q) and rq, 75 € L>®(Q) N HY(Q) is a solution of the stationary drift-diffusion-equations.
Then sufficient conditions for the convergence of p, E, h to the stationary state r, ¢,

fe. limy o ||E(t) + V¢||LQ(Q) =0 and limy_, ||p(t) — r||Lp(Q) =0 for all p € [1,00) will be given.
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