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Abstract. In this paper we construct a theory of stochastic integration of processes with values
in L (H, E), where H is a separable Hilbert space and E is a UMD Banach space. The integrator

is an H-cylindrical Brownian motion. Our approach is based on a two-sided Lp-decoupling

inequality for UMD spaces due to Garling, which is combined with the theory of stochastic
integration of L (H, E)-valued functions introduced recently by two of the authors. We obtain

various characterizations of the stochastic integral and prove versions of the Itô isometry, the
Burkholder-Davis-Gundy inequalities, and the representation theorem for Brownian martingales.

1. Introduction

It is well known that the theory of stochastic integration can be extended to Hilbert space-
valued processes in a very satisfactory way. The reason for this is that the Itô isometry is an
L2-isometry which easily extends to the Hilbert space setting. At the same time, this explains why
it is considerably more difficult to formulate a theory of stochastic integration for processes taking
values in a Banach space E. By a well known result due to Rosiński and Suchanecki [36], the class
of strongly measurable functions φ : [0, T ] → E that are stochastically integrable (in a sense that is
made precise below) with respect to a Brownian motion W coincides with L2(0, T ;E) if and only
if E isomorphic to a Hilbert space. More precisely, the authors showed that E has type 2 if and
only if every φ ∈ L2(0, T ;E) is stochastically integrable and there is a constant C > 0 such that

E
∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥2

6 C2‖φ‖2
L2(0,T ;E),

and that E has cotype 2 if and only if every strongly measurable, stochastically integrable function
φ belongs to L2(0, T ;E) and there exists a constant C > 0 such that

‖φ‖2
L2(0,T ;E) 6 C2 E

∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥2

.

Combined with Kwapień’s theorem which asserts that E is isomorphic to a Hilbert space if and
only if E has both type 2 and cotype 2, this gives the result as stated.

It turns out that the Itô isometry does extend to the Banach space setting provided one refor-
mulates it properly. To this end let us first observe that, for Hilbert spaces E,

‖φ‖L2(0,T ;E) = ‖Iφ‖L2(L2(0,T ),E),
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where L2(L2(0, T ), E) denotes the space of Hilbert-Schmidt operators from L2(0, T ) to E and
Iφ : L2(0, T ) → E is the integral operator defined by

Iφf :=
∫ T

0

f(t)φ(t) dt.

Now one observes that the class L2(L2(0, T ), E) coincides isometrically with the class of γ-radoni-
fying operators γ(L2(0, T ), E). With this in mind one has the natural result that a function
φ : [0, T ] → E, where E is now an arbitrary Banach space, is stochastically integrable if and only
if the corresponding integral operator Iφ defines an element in γ(L2(0, T ), E), and if this is the
case the Itô isometry takes the form

E
∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥2

= ‖Iφ‖2
γ(L2(0,T ),E).

This operator-theoretic approach to stochastic integration of E-valued functions has been devel-
oped systematically by two of us [28]. The purpose of the present paper is to extend this theory
to the case of E-valued processes. This is achieved by the decoupling approach initiated by Gar-
ling [15], who proved a two-sided Lp-estimate for the stochastic integral of an elementary adapted
process φ with values in a UMD space in terms of the stochastic integral of φ with respect to an
independent Brownian motion. A new short proof of these estimates is included. The decoupled
integral is defined path by path, which makes it possible to apply the theory developed for E-valued
functions to the sample paths of φ. As a result, we obtain a two-sided Lp-estimate for the stochastic
integral of φ in terms of the Lp-norm of the associated γ(L2(0, T ), E)-valued random variable Xφ

defined path by path by Xφ(ω) := Iφ(·,ω). As it turns out, the space Lp(Ω; γ(L2(0, T ), E)) provides
the right setting to establish a fairly complete theory of stochastic integration of adapted processes
with values in a UMD space E. We obtain various characterizations of the class of stochastically
integrable processes and prove a version of the Itô isometry, which, together with Doob’s maximal
inequality, leads to the following Burkholder-Davis-Gundy type inequalities: for every p ∈ (1,∞)
there exist constants 0 < c < C <∞, depending only on p and E, such that

(1.1) cp E‖Xφ‖p
γ(L2(0,T ),E) 6 E sup

t∈[0,T ]

∥∥∥∫ t

0

φ(s) dW (s)
∥∥∥p

6 Cp E‖Xφ‖p
γ(L2(0,T ),E).

This result clearly indicates that for UMD spaces E, the space Lp(Ω; γ(L2(0, T ), E)) is the ‘correct’
space of integration, at least if one is interested in having two-sided Lp-estimates for the stochastic
integral. In order to keep this paper at a reasonable length, the proof of an Itô formula is postponed
to the paper [26].

The fact that the two-sided estimates (1.1) are indeed available shows that our theory extends
the Hilbert space theory in a very natural way. Garling’s estimates actually characterize the class
of UMD spaces, and for this reason the decoupling approach is naturally limited to this class of
spaces if one insists on having two-sided estimates. From the point of view of applications this
is an acceptable limitation, since this class includes many of the classical reflexive spaces such as
the Lp spaces for p ∈ (1,∞) as well as spaces constructed from these, such as Sobolev spaces and
Besov spaces. At the price of obtaining only one-sided estimates, our theory can be extended to
a class of Banach spaces having a one-sided randomized version of the UMD property. This class
of spaces was introduced by Garling [16] and includes all L1-spaces. The details will be presented
elsewhere.

For the important special case of Lq(S)-spaces, where (S,Σ, µ) is a σ-finite measure space and
q ∈ (1,∞), the operator language can be avoided and the norm of Lp(Ω; γ(L2(0, t), Lq(S))) is
equivalent to a square function norm. More precisely, for every p ∈ (1,∞) there exist constants
0 < c < C <∞ such that

cp E
∥∥∥( ∫ T

0

|φ(t, ·)|2 dt
) 1

2
∥∥∥p

Lq(S)
6 E‖Xφ‖p

γ(L2(0,T ),E) 6 Cp E
∥∥∥( ∫ T

0

|φ(t, ·)|2 dt
) 1

2
∥∥∥p

Lq(S)
.
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As an application of our abstract results we prove in Section 4 that Lp-martingales with values in
a UMD space are stochastically integrable and we provide an estimate for their stochastic integrals.

A decoupling inequality for the moments of tangent martingale difference sequences was obtained
by Hitczenko [17] and McConnell [24]. McConnell used it to obtain sufficient pathwise conditions
for stochastic integrability of processes with values in a UMD space. We shall recover McConnell’s
result by localization. This approach has the advantage of replacing the ζ-convexity arguments
used by McConnell by abstract operator-theoretic arguments. In our approach, the UMD property
is only used through the application of Garling’s estimates which are derived directly from the
definition of the UMD property.

With only little extra effort the results described above can be derived in the more general
setting of L (H,E)-valued processes, with H-cylindrical Brownian motions as integrators. Here,
H is a separable real Hilbert space and L (H,E) denotes the space of bounded linear operators
from H to E. We shall formulate all results in this framework, because this permits the application
of our theory to the study of certain classes of nonlinear stochastic evolution equations in E, driven
by an H-cylindrical Brownian motion. Here the space Lp(Ω; γ(L2(0, T ;H), E)) (which takes over
the role of Lp(Ω; γ(L2(0, T ), E)) ) serves as the framework for a classical fixed point argument.
This will be the topic of a forthcoming paper [27]. The reader who is not interested in this level of
generality may simply substitute H by R and identify L (R, E) with E and WH with a Brownian
motion W throughout the paper.

Many authors (cf. [1, 4, 5, 6, 11, 12, 30, 31] and references therein) have considered the problem
of stochastic integration in Banach spaces with martingale type 2 or related geometric properties.
We compare their approaches with ours at the end of Section 3. Various classical spaces, such as
Lq(S) for q ∈ (1, 2), do have the UMD property but fail to have martingale type 2. On the other
hand, an example due to Bourgain [2] implies the existence of martingale type 2 spaces which do
not have the UMD property.

Preliminary versions of this paper have been presented at the meeting ‘Stochastic Partial Dif-
ferential Equations and Applications - VII’ in Levico Terme in January 2004 (M.V.) and meeting
‘Spectral Theory in Banach Spaces and Harmonic Analysis’ in Oberwolfach in July 2004 (J.v.N.).

2. Operator-valued processes

Throughout this paper, (Ω,F ,P) is a probability space endowed with a filtration F = (Ft)t∈[0,T ]

satisfying the usual conditions, H is a separable real Hilbert space, and E is a real Banach space
with dual E∗. The inner product of two elements h1, h2 ∈ H is written as [h1, h2]H , and the duality
pairing of elements x ∈ E and x∗ ∈ E∗ is denoted by 〈x, x∗〉. We use the notation L (H,E) for
the space of all bounded linear operators from H to E. We shall always identify H with its dual in
the natural way. In particular, the adjoint of an operator in L (H,E) is an operator in L (E∗,H).

We write Q1 .A Q2 to express that there exists a constant c, only depending on A, such that
Q1 6 cQ2. We write Q1 hA Q2 to express that Q1 .A Q2 and Q2 .A Q1.

2.1. Measurability. Let (S,Σ) be a measurable space and let E be a real Banach space with dual
space E∗. A function f : S → E is called measurable if f−1(B) ∈ Σ for every Borel set B ⊆ E,
and simple if it is measurable and takes finitely many values. The function f is called strongly
measurable if it is the pointwise limit of a sequence of simple functions, and separably valued if there
exists a separable closed subspace E0 of E such that f(s) ∈ E0 for all s ∈ S. Given a functional
x∗ ∈ E∗, we define the function 〈f, x∗〉 : S → R by 〈f, x∗〉(s) := 〈f(s), x∗〉. The function f is said
to be scalarly measurable if 〈f, x∗〉 is measurable for all x∗ ∈ E∗. More generally, if F is a linear
subspace of E∗ and 〈f, x∗〉 is measurable for all x∗ ∈ F , we say that f is F -scalarly measurable.
The following result is known as the Pettis measurability theorem [37, Proposition I.1.10].

Proposition 2.1 (Pettis measurability theorem). For a function f : S → E the following asser-
tions are equivalent:

(1) f is strongly measurable;
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(2) f is separably valued and scalarly measurable;
(3) f is separably valued and F -scalarly measurable for some weak∗-dense linear subspace F

of E∗.

A function Φ : S → L (H,E) is called scalarly measurable if the function Φ∗x∗ : S → H defined
by Φ∗x∗(s) := Φ∗(s)x∗ is strongly measurable for all x∗ ∈ E∗, and H-strongly measurable if for all
h ∈ H the function Φh : S → E defined by Φh(s) := Φ(s)h is strongly measurable.

Let µ be a finite measure on (S,Σ). Two scalarly measurable functions Φ,Ψ : S → L (H,E)
are called scalarly µ-equivalent if for all x∗ ∈ E∗ we have Φ∗x∗ = Ψ∗x∗ µ-almost everywhere on S.

Proposition 2.2. If E is weakly compactly generated, then every scalarly measurable function
Φ : S → L (H,E) is scalarly µ-equivalent to an H-strongly measurable function Ψ : S → L (H,E).

For H = R this is a deep result of Edgar [14], and the result for general H is easily deduced
from it. Recall that a Banach space E is weakly compactly generated if it is the closed linear span
of one of its weakly compact subsets. All separable Banach spaces and all reflexive Banach spaces
are weakly compactly generated.

In the main results of this paper we are concerned with L (H,E)-valued stochastic processes
(Φt)t∈[0,T ] on a probability space (Ω,F ,P), which will be viewed as functions Φ : [0, T ] × Ω →
L (H,E). Since E will always be a Banach space belonging to a certain class of reflexive Ba-
nach spaces, Proposition 2.2 justifies us to restrict our considerations to H-strongly measurable
processes, i.e., to processes Φ : [0, T ] × Ω → L (H,E) with the property that for all h ∈ H the
E-valued process Φh : [0, T ]× Ω → E defined by Φh(t, ω) := Φ(t, ω)h is strongly measurable. We
point out, however, that most of our proofs work equally well for scalarly measurable processes.

2.2. γ-Radonifying operators. In this subsection we discuss some properties of the operator
ideal of γ-radonifying operators from a separable real Hilbert space H to E. The special case
H = L2(0, T ;H) will play an important role in this paper.

Let (γn)n>1 be a sequence of independent standard Gaussian random variables on a probabil-
ity space (Ω′,F ′,P′) (we reserve the notation (Ω,F ,P) for the probability space on which our
processes live) and let H be a separable real Hilbert space. A bounded operator R ∈ L (H , E) is
said to be γ-radonifying if there exists an orthonormal basis (hn)n>1 of H such that the Gaussian
series

∑
n>1 γnRhn converges in L2(Ω′;E). We then define

‖R‖γ(H ,E) :=
(
E′

∥∥∥∑
n>1

γnRhn

∥∥∥2) 1
2
.

This number does not depend on the sequence (γn)n>1 and the basis (hn)n>1, and it defines a
norm on the space γ(H , E) of all γ-radonifying operators from H into E. Endowed with this
norm, γ(H , E) is a Banach space, which is separable if E is separable. If R ∈ γ(H , E), then
‖R‖ 6 ‖R‖γ(H ,E). If E is a Hilbert space, then γ(H , E) = L2(H , E) isometrically, where
L2(H , E) denotes the space of all Hilbert-Schmidt operators from H to E.

The following property of γ-radonifying operators will be important:

Proposition 2.3 (Ideal property). Let Ẽ be a real Banach space and let H̃ be a separable real
Hilbert space. If B1 ∈ L (H̃ ,H ), R ∈ γ(H , E), and B2 ∈ L (E, Ẽ), then B2 ◦R ◦B1 ∈ γ(H̃ , Ẽ)
and ‖B2 ◦R ◦B1‖γ(H̃ ,Ẽ) 6 ‖B2‖ ‖R‖γ(H ,E) ‖B1‖.

For these and related results we refer to [13, 30, 37].
We shall frequently use the following convergence result.

Proposition 2.4. If the T1, T2, . . . ∈ L (H ) and T ∈ L (H ) satisfy
(1) supn>1 ‖Tn‖ <∞,
(2) T ∗h = limn→∞ T ∗nh for all h ∈ H ,

then for all R ∈ γ(H , E) we have R ◦ T = limn→∞R ◦ Tn in γ(H , E).
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Proof. By the estimate ‖R ◦ S‖γ(H ,E) 6 ‖R‖γ(H ,E)‖S‖ for S ∈ L (H) and (1), it suffices to
consider finite rank operators R ∈ γ(H , E). For such an operator, say R =

∑k
j=1 hj ⊗xj , we may

estimate

‖R ◦ (T − Tn)‖γ(H ,E) 6
k∑

j=1

‖xj‖‖T ∗hj − T ∗nhj‖.

By (2), the right-hand side tends to zero as n→∞. �

Identifying H ⊗ E∗ canonically with a weak∗-dense linear subspace of (γ(H , E))∗, as an easy
consequence of the Pettis measurability theorem we obtain the following measurability result for
γ(H , E)-valued functions. A closely related result is given in [30].

Lemma 2.5. Let (S,Σ, µ) be a σ-finite measure space. For a function X : S → γ(H , E) the
following assertions are equivalent:

(1) The function s 7→ X(s) is strongly measurable;
(2) For all h ∈ H , the function s 7→ X(s)h is strongly measurable.

If these equivalent conditions hold, there exists a separable closed subspace E0 of E such that
X(s) ∈ γ(H , E0) for all s ∈ S.

The following result will be useful:

Proposition 2.6 (γ-Fubini isomorphism). Let (S,Σ, µ) be a σ-finite measure space and let p ∈
[1,∞) be fixed. The mapping Fγ : Lp(S; γ(H , E)) → L (H , Lp(S;E)) defined by

(Fγ(X)h)(s) := X(s)h, s ∈ S, h ∈ H ,

defines an isomorphism from Lp(S; γ(H , E)) onto γ(H , Lp(S;E)).

Proof. Let (hn)n>1 be an orthonormal basis for H and let (γn)n>1 be a sequence of independent
standard Gaussian random variables on a probability space (Ω′,F ′,P′). By the Kahane-Khinchine
inequalities and Fubini’s theorem we have, for any X ∈ Lp(S; γ(H , E)),

(2.1)

‖Fγ(X)‖γ(H ,Lp(S;E))

=
(
E′

∥∥∥∑
n>1

γnFγ(X)hn

∥∥∥2

Lp(S;E)

) 1
2 hp

(
E′

∥∥∥∑
n>1

γn Fγ(X)hn

∥∥∥p

Lp(S;E)

) 1
p

=
( ∫

S

E′
∥∥∥∑

n>1

γnXhn

∥∥∥p

dµ
) 1

p hp

( ∫
S

(
E′

∥∥∥∑
n>1

γnXhn

∥∥∥2) p
2
dµ

) 1
p

=
( ∫

S

‖X‖p
γ(H ,E) dµ

) 1
p

= ‖X‖Lp(S;γ(H ,E)).

By these estimates the range of the operator X 7→ Fγ(X) is closed in γ(H , Lp(S;E)). Hence to
show that this operator is surjective it is enough to show that its range is dense. But this follows
from

Fγ

( N∑
n=1

1Sn
⊗

( K∑
k=1

hk ⊗ xkn

))
=

K∑
k=1

hk ⊗
( N∑

n=1

1Sn
⊗ xkn

)
,

for all Sn ∈ Σ with µ(Sn) <∞ and xkn ∈ E, noting that the elements on the right-hand side are
dense in γ(H , E). �

For p = 2 we have equality in all steps of (2.1).
For later use we note that if (S,Σ, µ) = (Ω,F ,P) is a probability space and H = L2(0, T ;H),

then the γ-Fubini isomorphism takes the form

Fγ : Lp(Ω; γ(L2(0, T ;H), E)) ' γ(L2(0, T ;H), Lp(Ω;E)).

The space on the left-hand side will play an important role in the stochastic integration theory
developed in Section 3.
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2.3. Representation. As before we let H is a separable real Hilbert space.
An H-strongly measurable function Φ : [0, T ] → L (H,E) is said to belong to L2(0, T ;H)

scalarly if for all x∗ ∈ E∗ the function Φ∗x∗ : (0, T ) → H belongs to L2(0, T ;H). Such a function
represents an operator R ∈ L (L2(0, T ;H), E) if for all f ∈ L2(0, T ;H) and x∗ ∈ E∗ we have

〈Rf, x∗〉 =
∫ T

0

〈Φ(t)f(t), x∗〉 dt.

Similarly, an H-strongly measurable process Φ : [0, T ] × Ω → L (H,E) is said to belong to
L2(0, T ;H) scalarly almost surely if for all x∗ ∈ E∗ it is true that the function Φ∗ωx

∗ : (0, T ) → E
belongs to L2(0, T ;H) for almost all ω ∈ Ω. Here we use the notation

Φω(t) := Φ(t, ω).

Note that the exceptional set may depend on x∗. Such a process Φ is said to represent an H-
strongly measurable random variable X : Ω → L (L2(0, T ;H), E) if for all f ∈ L2(0, T ;H) and
x∗ ∈ E∗ we have

〈X(ω)f, x∗〉 =
∫ T

0

[f(t),Φ∗(t, ω)x∗]H dt for almost all ω ∈ Ω.

If Φ1 and Φ2 are H-strongly measurable, then Φ1 and Φ2 represent the same random variable X
if and only if Φ1(t, ω) = Φ2(t, ω) for almost all (t, ω) ∈ [0, T ] × Ω. In the converse direction, the
strongly measurable random variables X1 and X2 are represented by the same process Φ if and
only if X1(ω) = X2(ω) for almost all ω ∈ Ω.

For a random variable X : Ω → γ(L2(0, T ;H), E) we denote by 〈X,x∗〉 : Ω → L2(0, T ;H) the
random variable defined by

〈X,x∗〉(ω) := X∗(ω)x∗.
Notice that X is represented by Φ if and only if for all x∗ ∈ E∗, 〈X,x∗〉 = Φ∗x∗ in L2(0, T ;H)
almost surely.

The next lemma relates the above representability concepts and shows that the exceptional sets
may be chosen independently of x∗.

Lemma 2.7. Let Φ : [0, T ]×Ω → L (H,E) be an H-strongly measurable process and let X : Ω →
γ(L2(0, T ;H), E) be strongly measurable. The following assertions are equivalent:

(1) Φ represents X.
(2) Φω represents X(ω) for almost all ω ∈ Ω.

Proof. The implication (1)⇒(2) is clear from the definitions. To prove the implication (2)⇒(1)
we start by noting that the Pettis measurability theorem allows us to assume, without loss of
generality, that E is separable. Let (fm)m>1 be a dense sequence in L2(0, T ;H) and let (x∗n)n>1

be a sequence in E∗ with weak∗-dense linear span. Choose a null set N ⊆ Ω such that
(i) Φ∗(·, ω)x∗n ∈ L2(0, T ;H) for all x∗n and all ω ∈ {N ;
(ii) for all fm, all x∗n, and all ω ∈ {N ,

(2.2) 〈X(ω)f, x∗〉 =
∫ T

0

〈Φ(t, ω)f(t), x∗〉 dt.

Let F denote the linear subspace of all x∗ ∈ E∗ for which
(i)′ Φ∗(·, ω)x∗ ∈ L2(0, T ;H) for all ω ∈ {N ;
(ii)′ (2.2) holds for all f ∈ L2(0, T ;H) and all ω ∈ {N .

By a limiting argument we see that x∗n ∈ F for all n > 1. Hence F is weak∗-dense. We claim
that F is also weak∗-sequentially closed. Once we have checked this, we obtain F = E∗ by the
Krein-Smulyan theorem, cf. [7, Proposition 1.2].

To prove the claim, fix ω ∈ {N and x∗ ∈ F arbitrary. Then, by (2.2),

(2.3) ‖Φ∗(·, ω)x∗‖L2(0,T ;H) 6 ‖X(ω)‖γ(L2(0,T ;H),E)‖x∗‖.
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Suppose now that limn→∞ y∗n = y∗ weak∗ in E∗ with each y∗n ∈ F . Then (2.3) shows that
the sequence Φ∗(·, ω)y∗n is bounded in L2(0, T ;H). By a convex combination argument as in [7,
Proposition 2.2] we find that y∗ ∈ F , and the claim is proved. �

Remark 2.8. The assumptions of (2) already imply that the induced mapping ω 7→ X(ω) from Ω
to γ(L2(0, T ;H), E) has a strongly measurable version. To see this, first note that by Lemma 2.5
it suffices to show that for all f ∈ L2(0, T ;H) the mapping ω 7→ X(ω)f is strongly measurable
from Ω to E. By assumption, almost surely we have that (2.2) holds for all f ∈ L2(0, T ;H) and
x∗ ∈ E∗. By the H-strong measurability of Φ and Fubini’s theorem, the right-hand side of (2.2) is
a measurable function of ω. Thus ω 7→ X(ω)f is scalarly measurable. By the Pettis measurability
theorem it remains to show that ω 7→ X(ω)f is almost surely separably-valued.

Since t 7→ Φ(t, ω) is H-strongly measurable for almost all ω ∈ Ω and belongs to L2(0, T ;H)
scalarly, it follows that t 7→ Φ(t, ω)f(t) is Pettis integrable with

X(ω)f =
∫ T

0

Φ(t, ω)f(t) dt

for almost all ω ∈ Ω. Then by the Hahn-Banach theorem, ω 7→ X(ω)f almost surely takes its
values in the closed subspace spanned by the range of (t, ω) 7→ Φ(t, ω)f(t), which is separable by
the H-strong measurability of Φ.

The following example shows what might go wrong if the assumption of representation in Lemma
2.7 were to be replaced by the weaker assumption of belonging to L2(0, T ;H) scalarly almost surely,
even in the simple case where H = R and E is a separable real Hilbert space.

Example 2.9. Let E be an infinite dimensional separable Hilbert space with inner product [·, ·]E .
We shall construct a process φ : [0, 1]× Ω → E with the following properties:

(1) φ is strongly measurable;
(2) φ belongs to L2(0, 1) scalarly almost surely;
(3) φω fails to be scalarly in L2(0, 1) for almost all ω ∈ Ω.

Let (ξn)n>1 denote a sequence of independent {0, 1}-valued random variables on a probability
space (Ω,F ,P) satisfying P{ξn = 1} = 1

n for n > 1. Fix an orthonormal basis (xn)n>1 in E. Define
φ : [0, 1]× Ω → E by φ(0, ω) = 0 and

φ(t, ω) := n
1
2 2

n
2 ξn(ω)xn for n > 1 and t ∈ [2−n, 2−n+1).

It is clear that φ is strongly measurable, and (2) is checked by direct computation. To check (3)
we first note that

P{ξn = 1 for infinitely many n > 1} = 1.

Indeed, this follows from the fact that for each n > 1 we have

P{ξk = 0 for all k > n} =
∏
k>n

(
1− 1

k

)
= 0.

Fix an arbitrary ω ∈ Ω for which ξn = 1 for infinitely many n > 1, say ξn(ω) = 1 for n = n1, n2, . . .
and ξn(ω) = 0 otherwise. Let (an)n>1 be any sequence of real numbers with

∑
n>1 a

2
n < ∞ and∑

n>1 na
2
n = ∞, and put x :=

∑
k>1 akxnk

. Then,∫ 1

0

[φ(t, ω), x]2E dt =
∑
k>1

nka
2
k >

∑
k>1

ka2
k = ∞.

This concludes the construction.
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2.4. Adaptedness. A process Φ : [0, T ]× Ω → L (H,E) is said to be elementary adapted to the
filtration F = (Ft)t∈[0,T ] if it is of the form

(2.4) Φ(t, ω) =
N∑

n=0

M∑
m=1

1(tn−1,tn]×Amn
(t, ω)

K∑
k=1

hk ⊗ xkmn,

where 0 6 t0 < · · · < tN 6 T and the sets A1n, . . . , AMn ∈ Ftn−1 are disjoint for each n (with
the understanding that (t−1, t0] := {0} and Ft−1 := F0) and the vectors h1, . . . , hK ∈ H are
orthonormal. An H-strongly measurable process Φ : [0, T ] × Ω → L (H,E) is called adapted to
F if for all h ∈ H the E-valued process Φh is strongly adapted, i.e., for all t ∈ [0, T ] the random
variable Φ(t)h is strongly Ft-measurable.

A random variable X : Ω → γ(L2(0, T ;H), E) is elementary adapted to F if it is represented
by an elementary adapted process. We call X strongly adapted to F if there exists a sequence of
elementary adapted random variables Xn : Ω → γ(L2(0, T ;H), E) such that limn→∞Xn = X in
measure in γ(L2(0, T ;H), E).

Recall that for a finite measure space (S,Σ, µ) and strongly measurable functions f, f1, f2, . . .
from S into a Banach space F , f = limn→∞ fn in measure if and only if limn→∞ E(‖f−fn‖B∧1) =
0.

Proposition 2.10. For a strongly measurable random variable X : Ω → γ(L2(0, T ;H), E), the
following assertions are equivalent:

(1) X is strongly adapted to F;
(2) X(1[0,t]f) is strongly Ft-measurable for all f ∈ L2(0, T ;H) and t ∈ [0, T ].

Proof. The implication (1)⇒(2) follows readily from the definitions.
(2)⇒(1): For δ > 0 we define the right translate Rδ of an operator R ∈ γ(L2(0, T ;H), E) by

Rδf := Rfδ, f ∈ L2(0, T ;H),

where fδ denotes the left translate of f . It follows by the right ideal property and Proposition 2.4
that Rδ ∈ γ(L2(0, T ;H), E) with ‖Rδ‖γ(H,E) 6 ‖R‖γ(H,E) and that δ 7→ Rδ is continuous with
respect to the γ-radonifying norm.

Define the right translate Xδ : Ω → γ(L2(0, T ;H), E) by pointwise action, i.e., Xδ(ω) :=
(X(ω))δ. Note that Xδ is strongly measurable by Lemma 2.5. By dominated convergence,
limδ↓0X

δ = X in measure in γ(L2(0, T ;H), E). Thus, for ε > 0 fixed, we may choose δ > 0
such that

(2.5) E(‖X −Xδ‖γ(L2(0,T ;H),E) ∧ 1) < ε.

Let 0 = t0 < · · · < tN = T be an arbitrary partition of [0, T ] of mesh 6 δ and let In = (tn−1, tn]
for n = 1, . . . , N . Let Xδ

n denote the restriction of Xδ to In, i.e.,

Xδ
n(ω)g := Xδ(ω)ing, g ∈ L2(In;H),

where in : L2(In;H) → L2(0, T ;H) is the inclusion mapping. From the assumption (1) we obtain
that Xδ

n is strongly Ftn−1-measurable as a random variable with values in γ(L2(In;H), E)). Pick
a simple Ftn−1-measurable random variable Yn : Ω → γ(L2(In;H), E) such that

E(‖Xδ
n − Yn‖γ(L2(In;H),E) ∧ 1) <

ε

N
,

say Yn =
∑Mn

m=1 1Amn
⊗ Smn with Amn ∈ Ftn−1 and Smn ∈ γ(L2(In;H), E). By a further ap-

proximation we may assume that the Smn are represented by elementary functions Ψmn : [0, T ] →
L (H,E) of the form

Ψmn(t) =
Jmn∑
j=1

1(s(j−1)mn,sjmn](t)
Kmn∑
k=1

(hk ⊗ xkmn),
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where tn−1 6 s0mn < · · · < sJmnmn 6 tn and (hk)k>1 is a fixed orthonormal basis for H. Define
the process Ψ : [0, T ]× Ω → L (H,E) by

Ψ(t, ω) :=
Mn∑

m=1

1Amn
(ω)Ψmn(t), t ∈ In.

It is easily checked that Ψ is elementary adapted. Let Y : Ω → γ(L2(0, T ;H), E) be represented
by Ψ. Then Y is elementary adapted and satisfies

(2.6) E(‖Xδ − Y ‖γ(L2(0,T ;H),E) ∧ 1) < ε.

Finally, by (2.5) and (2.6),
E(‖X − Y ‖γ(L2(0,T ;H),E) ∧ 1) 6 2ε.

This proves that X can be approximated in measure by a sequence of elementary adapted elements
Xn. �

Proposition 2.11. If Φ : [0, T ]×Ω → L (H,E) is an H-strongly measurable and adapted process
representing a random variable X : Ω → γ(L2(0, T ;H), E), then X is strongly adapted to F.

Proof. By using the identity 〈X(1[0,t]f), x∗〉 = [1[0,t]f,Φ∗x∗]L2(0,T ;H) and noting that the right-
hand side is Ft-measurable, this follows trivially from Proposition 2.10 and the Pettis measurability
theorem. �

For p ∈ [1,∞), the closure in Lp(Ω; γ(L2(0, T ;H), E)) of the elementary adapted elements will
be denoted by

Lp
F(Ω; γ(L2(0, T ;H), E)).

Proposition 2.12. If the random variable X ∈ Lp(Ω; γ(L2(0, T ;H), E)) is strongly adapted to F,
then X ∈ Lp

F(Ω; γ(L2(0, T ;H), E)).

Proof. By assumption, condition (1) in Proposition 2.10 is satisfied. Now we can repeat the proof of
the implication (1)⇒(2), but instead of approximating in measure we approximate in the Lp-norm.

�

3. Lp-stochastic integration

Recall that a family WH = (WH(t))t∈[0,T ] of bounded linear operators from H to L2(Ω) is called
an H-cylindrical Brownian motion if

(1) WHh = (WH(t)h)t∈[0,T ] is real-valued Brownian motion for each h ∈ H,
(2) E(WH(s)g ·WH(t)h) = (s ∧ t) [g, h]H for all s, t ∈ [0, T ], g, h ∈ H.

We always assume that the H-cylindrical Brownian motion WH is adapted to a given filtration F
satisfying the usual conditions, i.e., the Brownian motions WHh are adapted to F for all h ∈ H.

Example 3.1. Let W = (W (t))t>0 be an E-valued Brownian motion and let C ∈ L (E∗, E) be its
covariance operator, i.e., C is the unique positive symmetric operator such that E〈W (t), x∗〉2 =
t 〈Cx∗, x∗〉 for all t > 0 and x∗ ∈ E∗. Let HC be the reproducing kernel Hilbert space associated
with C and let iC : HC ↪→ E be the inclusion operator. Then the mappings

WHC
(t) : i∗Cx

∗ 7→ 〈W (t), x∗〉
uniquely extend to an HC-cylindrical Brownian motion WHC

.

If Φ : [0, T ]×Ω → E is an elementary adapted process of the form (2.4), we define the stochastic
integral

∫ T

0
Φ(t) dWH(t) by∫ T

0

Φ(t) dWH(t) :=
N∑

n=1

M∑
m=1

1Amn

K∑
k=1

(
WH(tn)hk −WH(tn−1)hk

)
xkmn.
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Note that the stochastic integral belongs to Lp(Ω;E) for all p ∈ [1,∞). It turns out that for a
suitable class of Banach spaces E this definition can be extended to the class of adapted processes
representing an element of Lp(Ω; γ(L2(0, T ;H), E)). In order to motivate our approach, we recall
the following result on stochastic integration of L (H,E)-valued functions from [28]; see [7, 23, 35,
36] for related results.

Proposition 3.2. For a function Φ : [0, T ] → L (H,E) belonging to L2(0, T ;H) scalarly, the
following assertions are equivalent:

(1) There exists a sequence (Φn)n>1 of elementary functions such that:
(i) for all x∗ ∈ E∗ we have limn→∞ Φ∗nx

∗ = Φ∗x∗ in L2(0, T ;H),
(ii) there exists a strongly measurable random variable η : Ω → E such that

η = lim
n→∞

∫ T

0

Φn(t) dWH(t) in probability;

(2) There exists a strongly measurable random variable η : Ω → E such that for all x∗ ∈ E∗

we have

〈η, x∗〉 =
∫ T

0

Φ∗(t)x∗ dWH(t) almost surely;

(3) Φ represents an operator R ∈ γ(L2(0, T ;H), E).
In this situation the random variables η in (1) and (2) are uniquely determined and equal almost
surely. Moreover, η is Gaussian and for all p ∈ [1,∞) we have

(3.1) (E‖η‖p)
1
p hp (E‖η‖2)

1
2 = ‖R‖γ(L2(0,T ;H),E).

For all p ∈ [1,∞) the convergence in (1), part (ii), is in Lp(Ω;E).

A function Φ satisfying the equivalent conditions of Proposition 3.2 will be called stochastically
integrable with respect to WH . The random variable η is called the stochastic integral of Φ with
respect to WH , notation

η =:
∫ T

0

Φ(t) dWH(t).

The second identity in (3.1) may be interpreted as an analogue of the Itô isometry.

Remark 3.3. If Φ is H-strongly measurable and belongs to L2(0, T ;H) scalarly, the arguments in
[36] can be adapted to show that condition (1) is equivalent to

(1′) There exists a sequence (Φn)n>1 of elementary functions such that:
(i) for all h ∈ H we have limn→∞ Φnh = Φh in measure on [0, T ],
(ii) there exists a strongly measurable random variable η : Ω → E such that

η = lim
n→∞

∫ T

0

Φn(t) dWH(t) in probability.

The extension of Proposition 3.2 to processes is based on a decoupling inequality for processes
with values in a UMD space E. Recall that a Banach space E is a UMD space if for some
(equivalently, for all) p ∈ (1,∞) there exists a constant βp,E > 1 such that for every n > 1, every
martingale difference sequence (dj)n

j=1 in Lp(Ω;E), and every {−1, 1}-valued sequence (εj)n
j=1 we

have (
E

∥∥∥ n∑
j=1

εjdj

∥∥∥p) 1
p

6 βp,E

(
E

∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

.

Examples of UMD spaces are all Hilbert spaces and the spaces Lp(S) for 1 < p <∞ and σ-finite
measure spaces (S,Σ, µ). If E is a UMD space, then Lp(S;E) is a UMD space for 1 < p < ∞.
For an overview of the theory of UMD spaces we refer the reader to [8, 34] and references given
therein.
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Let W̃H be an H-cylindrical Brownian motion on a second probability space (Ω̃, F̃ , P̃), adapted
to a filtration F̃. If Φ : [0, T ] × Ω → E is an elementary adapted process of the form (2.4), we
define the decoupled stochastic integral

∫ T

0
Φ(t) dW̃H(t) by∫ T

0

Φ(t) dW̃H(t) :=
N∑

n=1

M∑
m=1

1Amn

K∑
k=1

(
W̃H(tn)hk − W̃H(tn−1)hk

)
xkmn.

This stochastic integral belongs Lp(Ω;Lp(Ω̃;E)).
The following result was proved by Garling [15, Theorems 2 and 2′] for finite-dimensional Hilbert

spaces H. For reasons of completeness we include a short proof which is a variation of a more
general argument in [25].

Lemma 3.4 (Decoupling). Let H be a nonzero separable real Hilbert space and fix p ∈ (1,∞).
The following assertions are equivalent:

(1) E is a UMD space;
(2) For every elementary adapted process Φ : [0, T ]× Ω → L (H,E) we have

β−p
p,EEẼ

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p

6 E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

6 βp
p,EEẼ

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p

Proof. (1)⇒(2): Let Φ be an elementary adapted process of the form (2.4). We extend Φ, as well
as WH , W̃H and the σ-algebras Ft, F̃t in the obvious way to Ω× Ω̃. Write

N∑
n=1

dn =
∫ T

0

Φ(t) dWH(t) and
N∑

n=1

en =
∫ T

0

Φ(t) dW̃H(t),

where the random variables dn and en on Ω× Ω̃ are defined by dn = WH(tn)ξn−WH(tn−1)ξn and
en = W̃H(tn)ξn − W̃H(tn−1)ξn, where ξn :=

∑M
m=1 1Amn

∑K
k=1 hk ⊗ xkmn and

WH(t)ξn :=
M∑

m=1

1Amn

K∑
k=1

WH(t)hk ⊗ xkmn.

For n = 1, . . . , N let
r2n−1 := 1

2 (dn + en) and r2n := 1
2 (dn − en).

Then, (rj)2N
j=1 is a martingale difference sequence with respect to the filtration (Gj)2N

j=1, where

G2n = σ(Ftn
⊗ F̃tn

),

G2n−1 = σ(Ftn−1 ⊗ F̃tn−1 , wn1, wn2, . . . ),

where
wnk =

(
WH(tn)hk −WH(tn−1)hk

)
+

(
W̃H(tn)hk − W̃H(tn−1)hk

)
.

Notice that
N∑

n=1

dn =
2N∑
j=1

rj and
N∑

n=1

en =
2N∑
j=1

(−1)j+1rj .

Hence (2) follows from the UMD property applied to the sequences (rj)2N
j=1 and ((−1)j+1rj)2N

j=1.
(2)⇒(1): See [15, Theorem 2]. �

IfX ∈ Lp(Ω; γ(L2(0, T ;H), E)) is elementary adapted, we define the random variable IWH (X) ∈
Lp(Ω;E) by

IWH (X) :=
∫ T

0

Φ(t) dWH(t),
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where Φ is an elementary adapted process representing X. Note that IWH (X) does not depend
on the choice of the representing process Φ. Clearly IWH (X) ∈ Lp

0(Ω,FT ;E), the closed sub-
space of Lp(Ω;E) consisting of all FT -measurable random variables with mean zero. In the first
main result of this section we extend the mapping X 7→ IWH (X) to a bounded operator from
Lp

F(Ω; γ(L2(0, T ;H), E)) to Lp
0(Ω,FT ;E). If F = FWH is the augmented filtration generated by

the Brownian motions WHh, h ∈ H, this mapping turns out to be an isomorphism.

Theorem 3.5 (Itô isomorphism). Let E be a UMD space and fix p ∈ (1,∞). The mapping
X 7→ IWH (X) has a unique extension to a bounded operator

IWH : Lp
F(Ω; γ(L2(0, T ;H), E)) → Lp

0(Ω,FT ;E).

This operator is an isomorphism onto its range and we have the two-sided estimate

β−p
p,E‖X‖Lp(Ω;γ(L2(0,T ;H),E)) .p E‖IWH (X)‖p .p βp,E‖X‖p

Lp(Ω;γ(L2(0,T ;H),E)).

For the augmented Brownian filtration FWH we have an isomorphism of Banach spaces

IWH : Lp

FWH
(Ω; γ(L2(0, T ;H), E)) ' Lp

0(Ω,F
WH

T ;E).

Proof. Let X ∈ Lp(Ω; γ(L2(0, T ;H), E)) be elementary and adapted, and let Φ be an elementary
adapted process representing X. It follows from Proposition 3.2, the Kahane-Khinchine inequali-
ties, and Lemma 3.4 that

E‖X‖p
γ(L2(0,T ;H),E) = E

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p

L2(Ω̃;E)
hp E

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p

Lp(Ω̃;E)

hp,E E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

= E‖IWH (X)‖p.

Thus the map X 7→ IWH (X) extends uniquely to an isomorphism from Lp
F(Ω; γ(L2(0, T ;H), E))

onto its range, which is a closed subspace of Lp
0(Ω,F0;E).

Next assume that F = FWH . Since IWH is an isomorphism onto its range, which is a closed sub-
space of Lp

0(Ω,F
WH

T ;E), it suffices to show that this operator has dense range in Lp
0(Ω,F

WH

T ;E).
Let (hk)k>1 be a fixed orthonormal basis for H. For m = 1, 2 . . . let F

(m)
T be denote by the

augmented σ-algebra generated by {WH(t)hk : t ∈ [0, T ], 1 6 k 6 m}. Since FWH

T is generated by
the σ-algebras F

(m)
T , by the martingale convergence theorem and approximation we may assume

η is in Lp
0(Ω,F

(m)
T ;E) and of the form

∑N
n=1(1An

− P (An)) ⊗ xn with An ∈ Fm
T and xn ∈ E.

From linearity and the identity

IWH (φ⊗ x) = (IWH (φ))⊗ x, φ ∈ Lp
F(Ω;L2(0, T ;H)),

it even suffices to show that 1An
− P (An) = IWH (φ) for some φ ∈ Lp

F(Ω;L2(0, T ;H)). By the Itô
representation theorem for Brownian martingales, cf. [18, Lemma 18.11], [20, Theorem 3.4.15],
there exists φ ∈ L2

F(Ω;L2(0, T ;H)) such that 1An
− P (An) =

∫ T

0
φ(t) dW (t), and the Burkholder-

Davis-Gundy inequalities and Doob’s maximal inequality imply that φ ∈ Lp
F(Ω;L2(0, T ;H)). �

We return to the general setting where WH is adapted to an arbitrary filtration F satisfying the
usual conditions. The second main result of this section describes the precise relationship between
the Lp-stochastic integral and the operator IWH . It extends Proposition 3.2 to L (H,E)-valued
processes. In view of Proposition 2.2 we restrict ourselves to H-strongly measurable processes.

Theorem 3.6. Let E be a UMD space and fix p ∈ (1,∞). For an H-strongly measurable and
adapted process Φ : [0, T ] × Ω → L (H,E) belonging to Lp(Ω;L2(0, T ;H)) scalarly, the following
assertions are equivalent:

(1) There exists a sequence (Φn)n>1 of elementary adapted processes such that:
(i) for all h ∈ H and x∗ ∈ E∗ we have limn→∞〈Φnh, x

∗〉 = 〈Φh, x∗〉 in measure on
[0, T ]× Ω,
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(ii) there exists a strongly measurable random variable η ∈ Lp(Ω;E) such that

η = lim
n→∞

∫ T

0

Φn(t) dWH(t) in Lp(Ω;E);

(2) There exists a strongly measurable random variable η ∈ Lp(Ω;E) such that for all x∗ ∈ E∗
we have

〈η, x∗〉 =
∫ T

0

Φ∗(t)x∗ dWH(t) in Lp(Ω);

(3) Φ represents an element X ∈ Lp(Ω; γ(L2(0, T ;H), E));
(4) For almost all ω ∈ Ω, the function Φω is stochastically integrable with respect to an in-

dependent H-cylindrical Brownian motion W̃H , and ω 7→
∫ T

0
Φ(t, ω) dW̃H(t) defines an

element of Lp(Ω;Lp(Ω̃;E)).
In this situation the random variables η in (1) and (2) are uniquely determined and equal as
elements of Lp(Ω;E), the element X in (3) is in Lp

F(Ω; γ(L2(0, T ;H), E)), and we have η =
IWH (X) in Lp(Ω;E). Moreover,

(3.2) E‖X‖p
γ(L2(0,T ;H),E) hp E

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p

Lp(Ω̃;E)

and

(3.3) β−p
p,EE‖X‖p

γ(L2(0,T ;H),E) .p E‖η‖p .p β
p
p,EE‖X‖p

γ(L2(0,T ;H),E).

A process Φ : [0, T ]×Ω → L (H,E) satisfying the equivalent conditions of the theorem will be
called Lp-stochastically integrable with respect to WH . The random variable η = IWH (X) is called
the stochastic integral of Φ with respect to WH , notation

η = IWH (X) =:
∫ T

0

Φ(t) dWH(t).

Remark 3.7. Under the assumptions as stated, condition (1) is equivalent to
(1′) There exists a sequence (Φn)n>1 of elementary adapted processes such that:

(i) for all h ∈ H we have limn→∞ Φnh = Φh in measure on [0, T ]× Ω;
(ii) there exists an η ∈ Lp(Ω;E) such that

η = lim
n→∞

∫ T

0

Φn(t) dWH(t) in Lp(Ω;E).

The proof, as well as further approximation results, will be presented elsewhere.

Proof of Theorem 3.6. (4)⇔(3): This equivalence follows from Lemma 2.7; together with (3.1) this
also gives (3.2).

(3)⇒(1): By Propositions 2.11 and 2.12, X ∈ Lp(Ω; γ(L2(0, T ;H), E)) represented by Φ be-
longs to Lp

F(Ω; γ(L2(0, T ;H), E)). Thus we may choose a sequence (Xn)n>1 of elementary adapted
elements with limn→∞Xn = X in Lp(Ω; γ(L2(0, T ;H), E)). Let (Φn)n>1 be a representing se-
quence of elementary adapted processes. The sequence (Φn)n>1 has properties (i) and (ii). In-
deed, property (i) follows by noting that limn→∞ Φ∗nx

∗ = limn→∞〈Xn, x
∗〉 = 〈X,x∗〉 = Φ∗x∗

in Lp(Ω;L2(0, T ;H)), and hence in measure on [0, T ] × Ω, for all x∗ ∈ E∗. Property (ii), with
η = IWH (X), follows from Theorem 3.5, since

lim
n→∞

∫ T

0

Φn(t) dWH(t) = lim
n→∞

IWH (Xn) = IWH (X) in Lp(Ω;E).

The two-sided estimate (3.3) now follows from Theorem 3.5.
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(1)⇒(2): This follows from the Burkholder-Davis-Gundy inequalities, which imply that for all
x∗ ∈ E∗ we have limn→∞ Φ∗nx

∗ = Φ∗x∗ in Lp(Ω;L2(0, T ;H)).
(2)⇒(3): This is the technical part of the proof. It simplifies considerably for spaces E having

a Schauder basis. To get around such an assumption, we give an approximation argument via
quotient maps. We proceed in several steps.

We denote by BF the closed unit ball of a Banach space F .
Since Φ is H-strongly measurable and adapted, without loss of generality we may assume that

E is separable. Since E is reflexive, E∗ is separable as well and we may fix a dense sequence
(x∗n)n>1 in BE∗ . Define the closed linear subspaces Fn of E by

Fn :=
n⋂

i=1

ker(x∗i ).

Let En be the quotient space E/Fn, and letQn : E → En be the quotient map. Then dim(En) <∞
and there is a canonical isomorphism E∗n ' F⊥n , where F⊥n = {x∗ ∈ E∗ : x∗ = 0 on Fn}.

Step 1 – For every finite dimensional subspace G of E and every ε > 0 there exists an index
N > 1 such that

(3.4) ‖x‖ 6 (1 + ε)‖QNx‖ ∀x ∈ G.
To show this it suffices to consider x ∈ BG. Since BG is compact we can find elements y∗1 , . . . , y

∗
n ∈

E∗ with ‖y∗i ‖ 6 1 such that

‖x‖ 6
(
1 +

ε

2

)
sup

16i6n
|〈x, y∗i 〉|, ∀x ∈ BG.

Since (x∗i )i>1 is norm dense in B∗E , we may approximate the y∗i to obtain an index N such that

‖x‖ 6
(
1 + ε

)
sup

16j6N
|〈x, x∗j 〉|, ∀x ∈ BG.

It follows that for all x ∈ BG,

‖x‖ 6 (1 + ε) inf
y∈FN

sup
16j6N

|〈x− y, x∗j 〉| 6 (1 + ε) inf
y∈FN

‖x− y‖ = (1 + ε)‖QNx‖.

This proves (3.4).
Step 2 – Let the processes Φn : [0, T ] × Ω → L (H;En) be given by Φn(t, ω)h := QnΦ(t, ω)h.

Clearly Φn belongs to Lp(Ω;L2(0, T ;H)) scalarly. Moreover, Φn represents an element Xn ∈
Lp(Ω; γ(L2(0, T ;H), En)), since for the finite dimensional spaces En we have γ(L2(0, T ;H), En) '
L (L2(0, T ;H), En). Note that almost surely, in L2(0, T ;H) we have

(3.5) 〈Xn, x
∗〉 = Φ∗nx

∗ for all x∗ ∈ E∗.
This can be proved directly or deduced from Lemma 2.7.

It is easily checked that IWHXn = Qnη. Hence,

E‖Xn‖p
γ(L2(0,T ;H),En) .p β

p
p,En

E‖IWHXn‖p
En

= βp
p,En

E‖Qnη‖p
En

(∗)
6 βp

p,EE‖Qnη‖p
En

6 βp
p,EE‖η‖p.

In (∗) we used the well known fact that the UMD(p) constant of a quotient space of E can be
estimated by the UMD(p) constant of E.

For 1 6 m 6 n let Qnm : En → Em be given by QnmQnx := Qmx. Then ‖Qnm‖ 6 1 and
Xm = QnmXn. It follows that E‖Xm‖γ(L2(0,T ;H),Em) 6 E‖Xn‖γ(L2(0,T ;H),En). By Fatou’s lemma,

(3.6) E sup
n>1

‖Xn‖p
γ(L2(0,T ;H),En) = E lim

n→∞
‖Xn‖p

γ(L2(0,T ;H),En) .p,E E‖η‖p.

Step 3 – Let N0 be a null set such that for all ω ∈ {N0 we have

C(ω) := sup
n>1

‖Xn(ω)‖γ(L2(0,T ;H),En) <∞.



STOCHASTIC INTEGRATION IN UMD SPACES 15

Using (3.5), for each n > 1 we can find a null set Nn of that for all ω ∈ {Nn and x∗ ∈ E∗n,
〈Xn(ω), x∗〉 = Φ∗n(·, ω)x∗ in L2(0, T ;H). Let N := N0 ∪ (

⋃
n>1Nn). We claim that for all ω ∈ {N

and all x∗ ∈ E∗, Φ∗(·, ω)x∗ ∈ L2(0, T ;H).
Fix ω ∈ {N . First let x∗ be a linear combination of the elements x∗1, . . . , x

∗
n. Then x∗ ∈ F⊥n

and hence, for all t ∈ [0, T ], Φ∗(t, ω)x∗ = Φ∗n(t, ω)x∗. It follows that

‖Φ∗(·, ω)x∗‖L2(0,T ;H) = ‖〈Xn(ω), x∗〉‖L2(0,T ;H) 6 ‖Xn(ω)‖γ(L2(0,T ;H),En)‖x∗‖ 6 C(ω)‖x∗‖.

Next let x∗ ∈ E∗ be arbitrary; we may assume that x∗ ∈ B∗E . Since (x∗k)k>1 is norm dense in BE∗

we can find a subsequence (kn)n>1 such that x∗ = limn→∞ x∗kn
strongly. It follows that for all

m,n > 1 we have
‖Φ∗(·, ω)(x∗kn

− x∗km
)‖L2(0,T ;H) 6 C(ω)‖x∗kn

− x∗km
‖.

We deduce that (Φ∗(·, ω)x∗kn
)n>1 is a Cauchy sequence in L2(0, T ;H), and after passing to an

almost everywhere convergent limit we find that the limit equals Φ∗(·, ω)x∗. Hence, Φ∗(·, ω)x∗ =
limn→∞ Φ∗(·, ω)x∗kn

in L2(0, T ;H). Since ω ∈ {N was arbitrary, this proves the claim.
Step 4 – By Step 3, for ω ∈ {N fixed we may define the integral operatorX(ω) : L2(0, T ;H) → E

by

X(ω)f :=
∫ T

0

Φ(t, ω)f(t) dt.

These integrals are well-defined as Pettis integrals in E since E is reflexive. We claim that X(ω) ∈
γ(L2(0, T ;H), E) and

(3.7) ‖X(ω)‖γ(L2(0,T ;H),E) 6 sup
n>1

‖Xn(ω)‖γ(L2(0,T ;H),En).

To prove this, let the random variables ρn(ω) ∈ Lp(Ω′;E) be given by

ρn(ω) :=
n∑

i=1

γi

∫ T

0

Φ(t, ω)fi(t) dt,

where (γi)i>1 is a standard Gaussian sequence defined on a probability space (Ω′,F ′,P′) and
(fi)i>1 is an orthonormal basis for L2(0, T ;H).

Let ε > 0 be arbitrary and fixed. Since ρn(ω) takes its values in a finite dimensional subspace
of E, it follows from Step 1 that there is an index Nn such that

E′‖ρn(ω)‖2 6 (1 + ε)2E′‖QNn
ρn(ω)‖2.

Clearly,

E′‖QNn
ρn(ω)‖2 = E′

∥∥∥ n∑
i=1

γi

∫ T

0

ΦNn
(t, ω)fi(t) dt

∥∥∥2

6 ‖XNn
(ω)‖2

γ(L2(0,T ;H),ENn ),

and it follows that

sup
n>1

E′‖ρn(ω)‖2 6 (1 + ε)2 sup
N>1

‖XN (ω)‖2
γ(L2(0,T ;H),EN ).

Since E does not contain a copy of c0, a theorem of Hoffmann-Jørgensen and Kwapień [22, Theorem
9.29] assures that X(ω) ∈ γ(L2(0, T ;H), E) and

‖X(ω)‖2
γ(L2(0,T ;H),E) = sup

n>1
E′‖ρn(ω)‖2 6 (1 + ε)2 sup

N>1
‖XN (ω)‖2

γ(L2(0,T ;H),EN ).

Since ε > 0 was arbitrary, the claim follows.
Step 5 – To finish the proof, we note that X : Ω → γ(L2(0, T ;H), E) is almost surely equal

to a strongly measurable random variable; cf. Remark 2.8. It follows from (3.6) and (3.7) that
X ∈ Lp(Ω; γ(L2(0, T ;H), E)). By definition X is represented by Φ and hence (3) follows. �
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Remark 3.8. If the filtration F is assumed to be the augmented Brownian filtration FWH , the
equivalence (1)⇔(2) is true for arbitrary real Banach spaces E. This follows from the martingale
representation theorem in finite dimensions. We briefly sketch a proof of (2)⇒(1). For K = 1, 2, . . .
let F

(K)
T be the σ-algebra generated by the Brownian motions WHhk, 1 6 k 6 K. Choose a

sequence of simple random variables (ηn)n>1 in Lp(Ω,F (K)
T ;E) with mean zero and such that η =

limn→∞ ηn. This is possible by the martingale convergence theorem and the Pettis measurability
theorem. By the martingale representation theorem for finite dimensional spaces, for all n > 1
there exists an Lp-stochastically integrable process Φn such that ηn =

∫ T

0
Φn(t) dWH(t). The

sequence (Φn)n>1 satisfies (i) and (ii) of condition (1) of Theorem 3.6. Indeed, (ii) is obvious
and (i) follows from the Burkholder-Davis-Gundy inequalities. The processes Φn need not be
elementary adapted, but since each Φn takes values in a finite dimensional subspace of E one can
approximate the Φn with elementary adapted processes to complete the proof.

For H = R, the implication (4) ⇒ (1) in Theorem 3.6 can be interpreted as an Lp-version of
McConnell’s result quoted in the Introduction. Below, in the implication (4) ⇒ (1) of Theorem
5.9, we recover McConnell’s result.

Corollary 3.9 (Series expansion). Let E be a UMD space and fix p ∈ (1,∞). Assume that the H-
strongly measurable and adapted process Φ : [0, T ] × Ω → L (H,E) is Lp-stochastically integrable
with respect to WH . Then for all h ∈ H the process Φh : [0, T ] × Ω → E is Lp-stochastically
integrable with respect to WHh. Moreover, if (hn)n>1 is an orthonormal basis for H, then∫ T

0

Φ(t) dWH(t) =
∑
n>1

∫ T

0

Φ(t)hn dWH(t)hn,

with unconditional convergence in Lp(Ω;E).

Proof. Let PN be the orthogonal projection in H onto the span of the vectors h1, . . . , hN . Let
X ∈ Lp(Ω; γ(L2(0, T ;H), E)) be the element represented by Φ. By the right ideal property we
have

‖X ◦ PN‖γ(L2(0,T ;H),E) 6 ‖X‖γ(L2(0,T ;H),E)

almost surely. Here we think of PN as an operator on γ(L2(0, T ;H), E) defined by (PNS)f :=
S(PNf) with (PNf)(t) := PN (f(t)). By an approximation argument one can show that

lim
N→∞

‖X −X ◦ PN‖γ(L2(0,T ;H),E) = 0,

almost surely. Since ΦPN is represented by X ◦ PN , the result follows from Theorem 3.6 and
the dominated convergence theorem. The convergence of the series is unconditional since any
permutation of (hn)n>1 is again an orthonormal basis for H. �

A theory of stochastic integration for processes in martingale type 2 spaces has been developed
by a number of authors, including Belopolskaya and Daletskĭı [1], Brzeźniak [4, 5, 6], Dettweiler
[11, 12], Neidhardt [30], and Ondreját [31]. Some of these authors state their results for 2-uniformly
smooth Banach spaces; the equivalence of martingale type 2 and 2-uniform smoothness up to
renorming was shown by Pisier [32]. To make the link with our results, first we recall that a UMD
space has martingale (co)type 2 if and only if it has (co)type 2, cf. [6, 33], and that every space
with martingale type 2 has type 2. By the results of [29, 36], E has type 2 if and only if we have
an inclusion L2(0, T ; γ(H,E)) ↪→ γ(L2(0, T ;H), E), and that E has cotype 2 if and only if we
have an inclusion γ(L2(0, T ;H), E) ↪→ L2(0, T ; γ(H,E)); in both cases the inclusion is given via
representation. Thus from Theorem 3.6 we obtain the following result.

Corollary 3.10. Let E be a UMD space and let p ∈ (1,∞).
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(1) If E has type 2, then every H-strongly measurable and adapted process Φ which belongs to
Lp(Ω;L2(0, T ; γ(H,E)) is Lp-stochastically integrable with respect to WH and we have

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

.p,E E‖Φ‖p
L2(0,T ;γ(H,E)).

(2) If E has cotype 2, then every H-strongly measurable process Φ which is Lp-stochastically
integrable with respect to WH belong to Lp(Ω;L2(0, T ; γ(H,E)) and we have

E‖Φ‖p
L2(0,T ;γ(H,E)) .p,E E

∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

.

We conclude this section with a result giving a necessary and sufficient square function criterion
for Lp-stochastic integrability of L (H,E)-valued processes, where E is assumed to be a UMD
Banach function space. In view of Theorem 3.6 it suffices to give such a criterion for L (H,E)-
valued functions, and therefore a straightforward extension of [28, Corollary 2.10] (where only the
case H = R was considered) gives the following result.

Corollary 3.11. Let E be UMD Banach function space over a σ-finite measure space (S,Σ, µ)
and let p ∈ (1,∞). Let Φ : [0, T ] × Ω → L (H,E) be H-strongly measurable and adapted and
assume that there exists a strongly measurable function φ : [0, T ] × Ω × S → H such that for all
h ∈ H and t ∈ [0, T ],

(Φ(t)h)(·) = [φ(t, ·), h]H in E.

Then Φ is Lp-stochastically integrable with respect to WH if and only if

E
∥∥∥( ∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥p

E
<∞.

In this case we have

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

hp,E E
∥∥∥( ∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥p

E
.

4. The integral process

It is immediate from Theorem 3.6 that if Φ : [0, T ]×Ω → L (H,E) is Lp-stochastically integrable
with respect to WH , then for all t ∈ [0, T ] the restricted process Φ : [0, t] × Ω → L (H,E) is Lp-
stochastically integrable with respect to WH . Thus it is meaningful to ask for the properties of
the integral process

t 7→
∫ t

0

Φ(s) dWH(s), t ∈ [0, T ].

This will be the topic of the present section.
It will be convenient to introduce a continuous process

ξX : [0, T ]× Ω → γ(L2(0, T ;H), E)

associated with a strongly measurable random variable X : Ω → γ(L2(0, T ;H), E). For t ∈ [0, T ]
we define the γ(L2(0, T ;H), E)-valued random variable ξX(t) : Ω → γ(L2(0, T ;H), E) by

ξX(t, ω)f := (X(ω))(1[0,t]f), f ∈ L2(0, T ;H).

Note that ξX(T ) = X. The strong measurability of ξX(t) as a γ(L2(0, T ;H), E)-valued random
variable follows from Lemma 2.5.

Proposition 4.1. The process ξX defined above is strongly measurable and has continuous trajec-
tories. Moreover,

(1) If X is strongly adapted to F, then ξX is adapted to F and for all t ∈ [0, T ], ξX(t) is
strongly adapted to F;
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(2) If X ∈ Lp
F(Ω; γ(L2(0, T ;H), E)), then ξX(t) ∈ Lp

F(Ω; γ(L2(0, T ;H), E)) for all t ∈ [0, T ],
and the mapping t 7→ ξX(t) is continuous from [0, T ] to Lp

F(Ω; γ(L2(0, T ;H), E)).

Proof. By Proposition 2.4, t 7→ ξX(t, ω) is continuous for all ω ∈ Ω. Since for all t ∈ [0, T ], ξX(t)
is strongly measurable we obtain that ξX is strongly measurable.

(1): This follows from Lemma 2.5 and Proposition 2.10.
(2): For ω ∈ Ω fixed, the right ideal property implies that

‖ξX(t)(ω)‖γ(L2(0,T ;H),E) 6 ‖X(ω)‖γ(L2(0,T ;H),E).

Hence if X ∈ Lp
F(Ω; γ(L2(0, T ;H), E)), then for all t ∈ [0, T ], ξX(t) ∈ Lp

F(Ω; γ(L2(0, T ;H), E))
by Proposition 2.12. The continuity of t 7→ ξX(t) follows from Proposition 4.1 and dominated
convergence. �

Remark 4.2. Since (t, ω) 7→ ‖ξX(t, ω)‖2
γ(L2(0,T ;H),E) is nonnegative and nondecreasing, we may

think of this process as an analogue of the quadratic variation process.

Now let E be a UMD space and fix p ∈ (1,∞). For X ∈ Lp
F(Ω; γ(L2(0, T ;H), E)), with some

abuse of notation the E-valued process

IWH (ξX) : t 7→ IWH (ξX(t)), t ∈ [0, T ],

will be called the integral process associated with X. In the special case where X is represented
by an Lp-stochastically integrable process Φ, for all t ∈ [0, T ] we have

IWH (ξX(t)) =
∫ t

0

Φ(s) dWH(s) in Lp(Ω;E).

Proposition 4.3. Let E be a UMD space and fix p ∈ (1,∞). For all X ∈ Lp
F(Ω; γ(L2(0, T ;H), E))

the integral process IWH (ξX) is an E-valued Lp-martingale which is continuous in p-th moment.
It has a continuous adapted version which satisfies the maximal inequality

(4.1) E sup
t∈[0,T ]

‖IWH (ξX(t))‖p 6 qp E‖IWH (X)‖p ( 1
p + 1

q = 1).

Proof. For all x∗ ∈ E∗, the real-valued process IWH (ξ∗Xx
∗) is a martingale; cf. [18, Corollary 17.8].

The martingale property easily follows from this; cf. [28, Corollary 2.8]. The continuity in p-th
moment follows directly from the continuity of the Itô map and the continuity in p-th moment of
ξX , which was proved in Proposition 4.1.

Next we prove the existence of a continuous adapted version. Choose a sequence (Xn)n>1 of
elementary adapted elements such that limn→∞Xn = X in Lp(Ω; γ(L2(0, T ;H), E)). It follows
from Theorem 3.5 that limn→∞ IWH (Xn) = IWH (X) in Lp(Ω;E). Clearly, for each n > 1 there
exists a continuous version ηn of IWH (ξXn), and by the Pettis measurability theorem we have
ηn ∈ Lp(Ω;C([0, T ];E)). By Doob’s maximal inequality, the sequence (ηn)n>1 is a Cauchy sequence
in Lp(Ω;C([0, T ];E)). Its limit defines a continuous version of IWH (ξX), which is clearly adapted.

The final inequality (4.1) follows from Doob’s maximal inequality. �

Combining these results we have proved:

Theorem 4.4 (Burkholder–Davis–Gundy inequalities). Let E be a UMD space and fix p ∈ (1,∞).
If the H-strongly measurable and adapted process Φ : [0, T ] × Ω → L (H,E) is Lp-stochastically
integrable, then

E sup
t∈[0,T ]

∥∥∥∫ t

0

Φ(s) dWH(s)
∥∥∥p

hp,E E‖X‖p
γ(L2(0,T ;H),E),

where X ∈ Lp(Ω; γ(L2(0, T ;H), E)) is the element represented by Φ.
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The estimates in Corollary 3.10, when combined with Doob’s maximal inequality, may be consid-
ered as one-sided Burkholder–Davis–Gundy inequalities for the Lp(Ω;L2(0, T ; γ(H,E)))-norm. In
particular we recover, for UMD martingale type 2 spaces, the one-sided Burkholder–Davis–Gundy
inequalities for martingale type 2 spaces of Brzeźniak [6] and Dettweiler [12].

We address next the question whether the integral process associated with an Lp-stochastically
integrable process Φ is Lp-stochastically integrable with respect to a real-valued Brownian motion
W . When E is a real Hilbert space and p ∈ (1,∞), the answer is clearly affirmative and by the
Burkholder-Davis-Gundy inequalities we have(

E
∥∥∥∫ T

0

∫ t

0

Φ(s) dWH(s) dW (t)
∥∥∥p) 1

p hp

∥∥∥∫ ·

0

Φ(s) dWH(s)
∥∥∥

Lp(Ω;L2(0,T ;E))

6
√
T

(
E sup

t∈[0,T ]

∥∥∥∫ t

0

Φ(s) dWH(s)
∥∥∥p) 1

p hp

√
T‖Φ‖Lp(Ω;L2(0,T ;E)).

More generally, every L2(H,E)-valued Lp-martingale, where E is a Hilbert space, is Lp-stochastic-
ally integrable, and an estimate can be given using Doob’s inequality. In the following we shall
generalize these observations to γ(H,E)-valued Lp-martingales, where E is a UMD space. We will
say that a process M : [0, T ]× Ω → γ(H,E) is an Lp-martingale if M(t) ∈ Lp(Ω; γ(H,E)) for all
t ∈ [0, T ] and E(M(t)|Fs) = M(s) in Lp(Ω; γ(H,E)) for all 0 6 s 6 t 6 T . In the proof of the
following result we will need the well known fact that every Lp-martingale M : [0, T ] × Ω → H
admits a modification with cadlag trajectories. This may be proved as [21, Proposition 2].

Our next result uses the vector-valued Stein inequality, which asserts that in a UMD space
E certain families of conditional expectation operators are R-bounded. Recall that a collection
T ⊆ L (B1, B2), where B1 and B2 are Banach spaces, is said to be R-bounded if there exists a
constant M > 0 such that(

E
∥∥∥ N∑

n=1

rnTnxn

∥∥∥2

B2

) 1
2

6 M
(
E

∥∥∥ N∑
n=1

rnxn

∥∥∥2

B1

) 1
2
,

for all N > 1 and all sequences (Tn)N
n=1 in T and (xn)N

n=1 in B1. The least constant M for
which this estimate holds is called the R-bound of T , notation R(T ). By the Kahane-Khinchine
inequalities, the role of the exponent 2 may be replaced by any exponent 1 6 p < ∞. Replacing
the role of the Rademacher sequence by a Gaussian sequence we obtain the related notion of γ-
boundedness. By an easy randomization argument, every R-bounded family is γ-bounded and we
have γ(T ) 6 R(T ), where γ(T ) is the γ-bound of T .

Theorem 4.5. Let E be a UMD space and fix p ∈ (1,∞). Let M : [0, T ] × Ω → γ(H,E) be an
Lp-martingale with respect to the filtration F and assume that M(0) = 0. If WH is an H-cylindrical
Brownian motion adapted to F, then M is Lp-stochastically integrable with respect to WH and we
have (

E
∥∥∥∫ T

0

M(t) dWH(t)
∥∥∥p) 1

p

.p,E

√
T

(
E‖M(T )‖p

γ(H,E)

) 1
p .

Proof. The proof is based upon a multiplier result for spaces of γ-radonifying operators, due to
Kalton and the third named author [19]. Translated into the present setting, this result can be
formulated as follows. Let B1 and B2 be UMD spaces, let p ∈ (1,∞), and let N : [0, T ] × Ω →
L (B1, B2) be a strongly adapted process such that the set {N(t) : t ∈ [0, T ]} is γ-bounded. Then, if
Φ : [0, T ]×Ω → L (H,B1) is anH-strongly measurable process which is Lp-stochastically integrable
with respect to WH , the process NΦ : [0, T ]×Ω → L (H,B2) defined by (NΦ)(t)h := N(t)(Φ(t)h)
is Lp-stochastically integrable with respect to WH as well and satisfies

E
∥∥∥∫ T

0

N(t)Φ(t) dWH(t)
∥∥∥p

.p,B1,B2 K
p E

∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

.
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To start the proof of the theorem, we first show that M is H-strongly measurable and adapted.
Let h ∈ H be fixed. Clearly, Mh is an E-valued Lp-martingale. By martingale convergence, Mh
is left continuous in mean. Therefore by a general result from the theory of stochastic processes,
Mh is strongly measurable and adapted.

Next we check that M belongs to Lp(Ω;L2(0, T ;H)) scalarly. Let x∗ ∈ E∗ be fixed. By the
above discussion M∗x∗ has a modification with cadlag trajectories. Hence we may apply Doob’s
maximal inequality to obtain

E‖M∗x∗‖p
L2(0,T ;H) 6 T

p
2 E sup

t∈[0,T ]

‖M∗(t)x∗‖p
H .p T

p
2 E‖M∗(T )x∗‖p

H .

Let B = Lp
0(Ω,FT ;E) be the closed subspace in Lp(Ω;E) of all FT -measurable random vari-

ables with zero mean, and define the bounded and strongly left continuous function N : [0, T ] →
L (B) by

N(t)ξ := E(ξ|Ft), ξ ∈ B, t ∈ [0, T ].

Since E is a UMD space, by a result of Bourgain [3] the set {N(t) : t ∈ [0, T ]} is R-bounded, and
therefore γ-bounded, with γ-bound depending only on p and E. A detailed proof of this fact may
be found in [10, Proposition 3.8].

By the Fubini isomorphism we may identify the random variables M(t) ∈ Lp(Ω; γ(H,E)) with
operators M̃(t) ∈ γ(H,Lp(Ω;E)). Recall that for all t ∈ [0, T ], for all h ∈ H, for almost all ω ∈ Ω,
(M̃(t)h)(ω) = M(t, ω)h Define a constant function G : [0, T ] → L (H,B) by

G(t) := M̃(T ), t ∈ [0, T ].

Clearly G represents the element RG ∈ γ(L2(0, T ;H), B) given by

RGf =
∫ T

0

M̃(T )f(t) dt, f ∈ L2(0, T ;H).

and ‖RG‖γ(L2(0,T ;H),B =
√
T E‖M(T )‖γ(H,E). Since for all t ∈ [0, T ], M̃(t) = N(t)M̃(T ) in

B, we may apply the above multiplier result to conclude that M̃ represents an element R ∈
γ(L2(0, T ;H), B) with

‖R‖γ(L2(0,T ;H),B) .p,E ‖RG‖γ(L2(0,T ;H),B).

Using the γ-Fubini isomorphism we define X = Fγ
−1(R). Recall that for all f ∈ L2(0, T ;H), for

almost all ω ∈ Ω, (Rf)(ω) = X(ω)f .
We claim that X is represented by M . Once we know this, it follows with Theorem 3.6 that(

E
∥∥∥∫ T

0

M(t) dWH(t)
∥∥∥p) 1

p hp,E

(
E‖X‖p

γ(L2(0,T ;H),E)

) 1
p

hp ‖R‖γ(L2(0,T ;H),B) .p,E

√
T (E‖M(T )‖p

γ(H,E))
1
p .

Let f ∈ L2(0, T ;H), x∗ ∈ E∗ be arbitrary. We have to show that [M∗x∗, f ]L2(0,T ;H) = 〈Xf, x∗〉
almost surely. It suffices to check that E(1A[M∗x∗, f ]L2(0,T ;H)) = E(1A〈Xf, x∗〉) for all A ∈ FT .
By the Fubini theorem we have

E(1A[M∗x∗, f ]L2(0,T ;H)) =
∫

Ω

∫ T

0

〈M(t, ω)f(t), x∗〉1A(ω) dt dP (ω)

=
∫ T

0

∫
Ω

〈M(t, ω)f(t), x∗〉1A(ω) dP (ω) dt

=
∫ T

0

〈M̃(t)f(t),1A ⊗ x∗〉 dt = 〈Rf,1A ⊗ x∗〉 = E(〈Xf, x∗〉1A).

This proves the claim. �
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In view of Proposition 4.3, this theorem can be applied to the integral process IWH (ξX) associ-
ated with elements X ∈ Lp

F(Ω; γ(L2(0, T ;H), E)). In the special case where X is represented by a
process we obtain:

Corollary 4.6. Let E be a UMD space and fix p ∈ (1,∞). Let WH and W be an H-cylindrical
Brownian motion and a Brownian motion, respectively, both adapted to the filtration F. If the H-
strongly measurable and adapted process Φ : [0, T ] × Ω → L (H,E) is Lp-stochastically integrable
with respect WH , then the integral process

(∫ t

0
Φ(s) dWH(s)

)
t∈[0,T ]

is Lp-stochastically integrable
with respect to W and we have(

E
∥∥∥∫ T

0

∫ t

0

Φ(s) dWH(s) dW (t)
∥∥∥p) 1

p

.p,E

√
T

(
E

∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p) 1

p

.

We conclude this section with a representation theorem for E-valued Brownian Lp-marting-
ales, i.e., E-valued Lp-martingales adapted to the augmented filtration FWH generated by an
H-cylindrical Brownian motion WH . It is a direct consequence of the second part of Theorem 3.5
and Proposition 4.3:

Theorem 4.7 (Representation of Brownian Lp-martingales in UMD spaces). Let E be a UMD
space and fix p ∈ (1,∞). Then every Lp-martingale M : [0, T ]×Ω → E adapted to the augmented
filtration FWH has a continuous version, and there exists a unique X ∈ Lp

F(Ω; γ(L2(0, T ;H), E))
such that for all t ∈ [0, T ] we have

M(t) = M(0) + IWH (ξX(t)) in Lp(Ω;E).

5. Localization

We begin with a lemma which is a slight generalization of a stopping time argument in [24,
Lemma 3.3]. For the convenience of the reader we include the details.

Lemma 5.1. Let p ∈ [1,∞). Let E and F be Banach spaces and let (φt)t∈[0,T ] and (ψt)t∈[0,T ]

be continuous adapted processes with values in E and F , respectively. Assume furthermore that
ψ0 = 0. If there exists a constant C > 0 such that for all stopping times τ with values in [0, T ] we
have

(5.1) E‖φτ‖p
E 6 C E‖ψτ‖p

F

whenever these norms are finite, then for all δ > 0 and ε > 0 we have

(5.2) P
(

sup
t∈[0,T ]

‖φt‖E > ε
)

6
Cδp

εp
+ P

(
sup

t∈[0,T ]

‖ψt‖F > δ
)
.

Proof. Let δ, ε > 0 be arbitrary. Define stopping times µ and ν by

µ(ω) := inf{t ∈ [0, T ] : ‖φt(ω)‖E > ε}, ν(ω) := inf{t ∈ [0, T ] : ‖ψt(ω)‖F > δ},

where we take µ(ω) := T and ν(ω) := T if the infimum is taken over the empty set, and put
τ := µ∧ν. Then τ is a stopping time and E‖φτ‖p

E 6 εp, E‖ψτ‖p
F 6 δp. By Chebyshev’s inequality,

(5.1), and pathwise continuity we have

P
(

sup
t∈[0,T ]

‖φt‖E > ε, sup
t∈[0,T ]

‖ψt‖F < δ
)

6 P
(
‖φτ‖E > ε

)
6

1
εp

E‖φτ‖p
E 6

C

εp
E‖ψτ‖p

F 6
Cδp

εp
,

where the last inequality uses the fact that ψ0 = 0. This implies

P
(

sup
t∈[0,T ]

‖φt‖E > ε
)

6
Cδp

εp
+ P

(
sup

t∈[0,T ]

‖φt‖E > ε, sup
t∈[0,T ]

‖ψt‖F > δ
)
.

Clearly (5.2) follows from this. �



22 J.M.A.M. VAN NEERVEN, M.C. VERAAR, AND L. WEIS

For a Banach space B, let L0(Ω;B) be the vector space of all equivalence classes of strongly
measurable functions on Ω with values in the Banach space B which are identical almost surely.
Endowed with the translation invariant metric

‖ξ‖L0(Ω;B) = E(‖ξ‖ ∧ 1),

L0(Ω;B) is a complete metric space, and convergence with respect to this metric coincides with
convergence in probability.

We return to the standing assumptions that H is a separable real Hilbert space, WH is an
H-cylindrical Brownian motion adapted to a filtration F satisfying the usual conditions, and E is
a real Banach space. We denote by L0

F(Ω; γ(L2(0, T ;H), E)) the subspace of all adapted elements
of L0(Ω; γ(L2(0, T ;H), E)), i.e., the closure of subspace of all elementary adapted elements in
L0(Ω; γ(L2(0, T ;H), E)). Notice that X ∈ L0

F(Ω; γ(L2(0, T ;H), E)) if and only if X is strongly
adapted to F.

For a stopping time τ with values in [0, T ] and an element X ∈ L0
F(Ω; γ(L2(0, T ;H), E)) we

define the γ(L2(0, T ;H), E)-valued random variable ξX(τ) : Ω → γ(L2(0, T ;H), E) by

(ξX(τ))(ω)f := ξX(τ(ω), ω)f = X(ω)(1[0,τ(ω)]f), f ∈ L2(0, T ;H).

The random variable ξX(τ) is well-defined since ξX has continuous paths and is adapted by Propo-
sition 4.1.

Lemma 5.2. The random variable ξX(τ) is strongly adapted to F. If p ∈ [1,∞) and X ∈
Lp

F(Ω; γ(L2(0, T ;H), E)), then ξX(τ) ∈ Lp
F(Ω; γ(L2(0, T ;H), E)).

Proof. It is clear that for all t ∈ [0, T ], f ∈ L2(0, T ;H), and x∗ ∈ E∗, the random variable
〈X(1[0,t]f), x∗〉 is Ft-measurable. Hence the first assertion follows by combining by the Pettis
measurability theorem and Proposition 2.10.

By the right ideal property,

‖ξX(τ)(ω)‖γ(L2(0,T ;H),E) 6 ‖X(ω)‖γ(L2(0,T ;H),E).

Hence if X ∈ Lp
F(Ω; γ(L2(0, T ;H), E)) for some p ∈ [1,∞), then ξX(τ) ∈ Lp(Ω; γ(L2(0, T ;H), E)).

The second assertion now follows from Proposition 2.12. �

Proposition 5.3. Let E be a UMD space and let p ∈ (1,∞). If X ∈ Lp
F(Ω; γ(L2(0, T ;H), E)) and

τ is a stopping time with values in [0, T ], then

(5.3) IWH (ξX(τ)) = (IWH (ξX))τ almost surely.

Proof. For elementary adapted X, (5.3) is obvious. For general X ∈ Lp
F(Ω; γ(L2(0, T ;H), E))

the result is obtain from the following approximation argument. Choose a sequence of elemen-
tary adapted elements such that limn→∞Xn = X in Lp

F(Ω; γ(L2(0, T ;H), E)). Hence, ξX(τ) =
limn→∞ ξXn

(τ) in Lp
F(Ω; γ(L2(0, T ;H), E)) and it follows from Theorem 3.5 that IWH (ξX(τ)) =

limn→∞ IWH (ξXn
(τ)) in Lp(Ω;E). On the other hand, Proposition 4.3 shows that IWH (ξX) =

limn→∞ IWH (ξXn
) in Lp(Ω;C([0, T ];E)). In particular, (IWH (ξX))τ = limn→∞(IWH (ξXn

))τ in
Lp(Ω;E). The general case of (5.3) now follows from the fact that (5.3) holds for all Xn. �

By combining the previous two results we obtain the following result, which should be compared
with [24, Lemma 3.3]. Our approach is somewhat simpler, as it allows the use of F-stopping times
rather than the F⊗ F̃-stopping times used in [24].

Lemma 5.4. Let E be a UMD space and let p ∈ (1,∞). If X ∈ Lp
F(Ω; γ(L2(0, T ;H), E)), then

for all δ > 0 and ε > 0 we have

(5.4) P
(

sup
t∈[0,T ]

‖(IWH (ξX))t‖ > ε
)

6
Cp,Eδ

p

εp
+ P

(
‖X‖γ(L2(0,T ;H),E) > δ

)
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and

(5.5) P
(
‖X‖γ(L2(0,T ;H),E) > ε

)
6
Cp,Eδ

p

εp
+ P

(
sup

t∈[0,T ]

‖(IWH (ξX))t‖ > δ
)
,

where Cp,E is a constant which depends only on p and E.

Proof. For all ω ∈ Ω and t ∈ [0, T ],

‖(ξX(t))(ω)‖γ(L2(0,T ;H),E) 6 ‖X(ω)‖γ(L2(0,T ;H),E)

with equality for t = T , and therefore,

‖X(ω)‖γ(L2(0,T ;H),E) = sup
t∈[0,T ]

‖(ξX(t))(ω)‖γ(L2(0,T ;H),E).

Hence by Lemma 5.1 it suffices to prove that for every stopping time τ with values in [0, T ] we
have

E‖(IWH (ξX))τ‖p hp,E E‖ξX(τ)‖p
γ(L2(0,T ;H),E)

provided both norms are finite. But this follows from Proposition 5.3 and Theorem 3.5. �

We call an E-valued process M := (Mt)t∈[0,T ] a local martingale if it is adapted and there exists
a sequence of stopping times (τn)n>1 with values in [0, T ] with the property that for all ω ∈ Ω
there exists an index N(ω) such that τn(ω) = T for all n > N(ω) and such that the process
Mτn = (Mτn

t )t∈[0,T ] defined by
Mτn

t := Mt∧τn
−M0

is a martingale. In this case, (τn)n>1 is called a localizing sequence for M .
If, for some p ∈ [1,∞], each Mτn is an Lp-martingale, we call M a local Lp-martingale. In the

case of p = ∞ we say that M is a local bounded martingale. It is easy to see that every continuous
local martingale is a continuous local bounded martingale (cf. [9, Proposition 1.9]); a localizing
sequence (τn)n>1 is given by

τn = inf{t ∈ [0, T ] : ‖Mt‖ > n}.
Here we take τn = T if the infimum is taken over the empty set. We will use this convention for
all stopping times in the rest of paper.

We denote by M c,loc
0 (Ω;E) the space of continuous local martingales starting at 0, identifying

martingales that are indistinguishable. Each M ∈ M c,loc
0 (Ω;E) defines a random variable with val-

ues in C([0, T ];E). Thus we may identify M c,loc
0 (Ω;E) with a linear subspace of L0(Ω;C([0, T ];E)).

If we want to stress the role of the underlying filtration F we write M c,loc
0 (Ω;E) = M c,loc

0 (Ω,F;E).
Now let E be a UMD space and p ∈ (1,∞). For X ∈ Lp

F(Ω; γ(L2(0, T ;H), E)) we recall that
from Proposition 4.3 that IWH (ξX) is a continuous martingale starting at 0. With this in mind
we have the following localized version of Theorem 3.5.

Theorem 5.5 (Itô homeomorphism). Let E be a real UMD space. The mapping X 7→ IWH (ξX)
has a unique extension to a homeomorphism from L0

F(Ω; γ(L2(0, T ;H), E)) onto a closed subspace
of M c,loc

0 (Ω,F;E). Moreover, the estimates (5.4) and (5.5) extend to arbitrary elements X ∈
L0

F(Ω; γ(L2(0, T ;H), E)). For the augmented Brownian filtration FWH we have an homeomorphism

IWH : L0
FWH

(Ω; γ(L2(0, T ;H), E)) h M c,loc
0 (Ω,FWH ;E).

Proof. Fix X ∈ L0
F(Ω; γ(L2(0, T ;H), E)) and define a sequence of stopping times (τn)n>1 by

τn := inf{t ∈ [0, T ] : ‖ξX(t)‖γ(L2(0,T ;H),E) > n}.

Then ξX(τn) ∈ Lp
F(Ω; γ(L2(0, T ;H), E)) for every p ∈ (1,∞).

By Proposition 4.3 we can define a sequence of Lp-martingales (Mn)n>1 in M c,loc
0 (Ω;E) by

Mn := IWH (ξXn
).
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Since limn→∞Xn = X it follows from Lemma 5.4, applied to the differences Xm − Xn, that
(Mn)n>1 is a Cauchy sequence in L0(Ω;C([0, T ];E)). It follows that (Mn)n>1 converges to M ∈
L0(Ω;C([0, T ];E)). As a process, M = (Mt)t∈[0,T ] is adapted and M0 = 0 almost surely. To show
that M ∈ M c,loc

0 (Ω;E) it is now enough to show that (Mt)t∈[0,T ] is a local martingale. We claim
that

Mτm∧t = Mm
t almost surely.

This will complete the proof, since it shows that M is a local martingale with localizing sequence
(τm)m>1. To prove the claim we fix m > 1. It follows from Proposition 5.3 that for all n > m > 1,

(5.6)
Mn

τm∧t = (IWH (ξXn
))τm∧t = IWH ((ξXn

)τm∧t)

= IWH (ξXn(τm ∧ t)) = (IWH (ξXm))t = Mm
t almost surely.

By passing to a subsequence we may assume that limn→∞Mn = M in C([0, T ];E) almost surely.
Then also limn→∞Mn

τm∧t = Mτm∧t in C([0, T ];E) almost surely, and the claim now follows by
letting n tend to infinity in (5.6). It follows that IWH (X) := M is well-defined. At the same time,
this argument shows that (5.4) extends to all X ∈ L0

F(Ω; γ(L2(0, T ;H), E)). This in turn shows
that IWH is continuous.

Next, we extend (5.5) to arbitrary X ∈ L0
F(Ω; γ(L2(0, T ;H), E)). Let M = IWH (ξX) and define

a sequence of stopping times (τn)n>1 as

τn = inf{t ∈ [0, T ] : ‖ξX(t)‖ > n}.
By the above results we have, IWH (ξXn

) = Mτn . Applying (5.5) to each Xn and letting n tend to
infinity one obtains (5.5) for X. From this, we deduce that IWH has a continuous inverse. This
also shows that the mapping IWH has a closed range in M c,loc

0 (Ω;E) and L0(Ω;C([0, T ];E)).
Next assume that F = FWH . It suffices to show that the mapping IWH is surjective. Let

M ∈ M c,loc
0 (Ω,FWH ;E) be arbitrary. We can find a localizing sequence (τn)n>1 such that each

Mτn is a bounded martingale. It follows from the second part of Theorem 3.5 that there is a
sequence (Xn)n>1 in L2

FWH
(Ω; γ(L2(0, T ;H), E)) such that

IWH (ξXn) = Mτn .

Clearly, (Mτn)n>1 converges to M in M c,loc
0 (Ω,FWH ;E). It follows from Theorem 5.5 that

(Xn)n>1 is a Cauchy sequence in L0
F(Ω; γ(L2(0, T ;H), E)) and therefore it converges to some

X ∈ L0
F(Ω; γ(L2(0, T ;H), E)). It follows from Theorem 5.5 that IWH (X) = M . �

Remark 5.6. Proposition 5.3 extends to arbitrary X ∈ L0
F(Ω; γ(L2(0, T ;H), E)). This may be

proved similarly as in Proposition 5.3, but now using Theorem 5.5 for the approximation argument.

The next results on stochastic integration for H-valued processes will be used below.

Facts 5.7. Let φ : [0, T ] × Ω → H be a strongly measurable adapted process such that φ ∈
L2(0, T ;H) almost surely. The following result hold:

• The integral process
∫ ·
0
φ(t) dWH(t) is well-defined and belongs to M c,loc

0 (Ω; R).
• The quadratic variation process of

∫ ·
0
φ(t) dWH(t) is given by

∫ ·
0
‖φ(t)‖2 dt.

• If τ is a stopping time, then almost surely for all t ∈ [0, T ] we have∫ τ∧t

0

φ(s) dWH(s) =
∫ t

0

1[0,τ ](s)φ(s) dWH(s).

Proposition 5.8. Let Φ : [0, T ]×Ω → E be an H-strongly measurable and adapted process which
belongs scalarly to L0(Ω;L2(0, T ;H)). If there exists a process ζ ∈ L0(Ω;C([0, T ];E)) such that
for all x∗ ∈ E∗ we have

〈ζ, x∗〉 =
∫ ·

0

Φ∗(t)x∗ dWH(t) in L0(Ω;C([0, T ]; R)),
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then ζ belongs to M c,loc
0 (Ω;E).

Proof. Clearly, ζ0 = 0 almost surely and ζ is adapted, so it suffices to show ζ is a local martingale.
It is obvious that for all x∗ ∈ E∗, 〈ζ, x∗〉 is a local martingale. Define a sequence of stopping times
(τn)n>1 by

τn := inf{t ∈ [0, T ] : ‖ζt‖ > n}.
By Fact 5.7, for all x∗ ∈ E∗ we have

〈ζτn , x∗〉 =
∫ ·

0

〈Φ(s), x∗〉1[0,τn](s) dWH(s) in C([0, T ]; R) almost surely.

Since the local martingale on left-hand side is bounded, the Burkholder–Davis–Gundy inequalities
and [18, Corollary 17.8] imply that it is a martingale and for all x∗ ∈ E∗ and 0 6 s 6 t it follows
that

〈E(ζτn∧t|Fs), x∗〉 = E(〈ζτn∧t, x
∗〉|Fs) = 〈ζτn∧s, x

∗〉
almost surely. It follows that for all 0 6 s 6 t we have E(ζτn∧t|Fs) = ζτn∧s, so (ζτn∧t)t∈[0,T ] is a
martingale and (ζt)t∈[0,T ] is a local martingale. �

For elementary adapted processes Φ : [0, T ]×Ω → L (H,E) we define the stochastic integral as
an element of L0(Ω;C([0, T ];E)) in the obvious way. The following result extends the integral to
a larger class of processes.

Theorem 5.9. Let E be a UMD space. For an H-strongly measurable and adapted process Φ :
[0, T ]×Ω → L (H,E) which is scalarly in L0(Ω;L2(0, T ;H)) the following assertions are equivalent:

(1) there exists a sequence (Φn)n>1 of elementary adapted processes such that:
(i) for all h ∈ H and x∗ ∈ E∗ we have limn→∞〈Φnh, x

∗〉 = 〈Φh, x∗〉 in measure on
[0, T ]× Ω,

(ii) there exists a process ζ ∈ L0(Ω;C([0, T ];E)) such that

ζ = lim
n→∞

∫ ·

0

Φn(t) dWH(t) in L0(Ω;C([0, T ];E));

(2) There exists a process ζ ∈ L0(Ω;C([0, T ];E)) such that for all x∗ ∈ E∗ we have

〈ζ, x∗〉 =
∫ ·

0

Φ∗(t)x∗ dWH(t) in L0(Ω;C[0, T ]);

(3) Φ represents an element X ∈ L0(Ω; γ(L2(0, T ;H), E));
(4) For almost all ω ∈ Ω, Φω is stochastically integrable with respect to W̃H .

In this situation X ∈ L0
F(Ω; γ(L2(0, T ;H), E)) and

ζ = IWH (ξX) in L0(Ω;C([0, T ];E)).

A process Φ : [0, T ] × Ω → L (H,E) satisfying the equivalent conditions of the theorem will
be called stochastically integrable with respect to WH . The process ζ = IWH (ξX) is called the
stochastic integral process of Φ with respect to WH , notation

ζ =
∫ ·

0

Φ(t) dWH(t).

It follows from Proposition 5.8 that ζ ∈ M c,loc
0 (Ω;E).

It is immediate from Proposition 4.3 that if Φ : [0, T ] × Ω → L (H,E) is Lp-stochastically
integrable for some p ∈ (1,∞), then Φ is stochastically integrable and we have

IWH (ξX) =
∫ ·

0

Φ(t) dWH(t),

where X ∈ Lp(Ω; γ(L2(0, T ;H), E)) is represented by Φ.
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Remark 5.10. Under the assumptions as stated, condition (1) is equivalent to:

(1′) There exists a sequence (Φn)n>1 of elementary adapted processes such that:
(i) for all h ∈ H we have limn→∞ Φnh = Φh in measure on [0, T ]× Ω;
(ii) there exists an η ∈ L0(Ω;C([0, T ];E)) such that

η = lim
n→∞

∫ ·

0

Φn(t) dWH(t) in L0(Ω;C([0, T ];E)).

Proof of Theorem 5.9. First note that (i) and (ii) of part (1), combined with [18, Proposition 17.6],
imply that in (i) we have convergence in L0(Ω;L2(0, T ;H)).

(1)⇒(3): Let Φn represent Xn ∈ L0(Ω; γ(L2(0, T ;H), E)). By (ii) and Lemma 5.4, these
elements define a Cauchy sequence in L0(Ω; γ(L2(0, T ;H), E)). Let X ∈ L0(Ω; γ(L2(0, T ;H), E))
be the limit. Since each Xn is elementary adapted we have X ∈ L0

F(Ω; γ(L2(0, T ;H), E)), and
with property (i) it follows that

〈X,x∗〉 = lim
n→∞

〈Xn, x
∗〉 = lim

n→∞
Φ∗nx

∗ = Φ∗x∗ in L0(Ω;L2(0, T ;H)).

Hence, Φ represents X.
(3)⇒(4): It follows from Lemma 2.7 that for almost all ω ∈ Ω, Φω is represented by X(ω). The

result now follows from Proposition 3.2.
(4)⇒(3): Let N be a null set such that Φω is stochastically integrable with respect to W̃H for all

ω ∈ {N . Proposition 3.2 assures that for such ω we may define X(ω) ∈ γ(L2(0, T ;H), E) defined
by

X(ω)f =
∫ T

0

Φ(t, ω)f(t) dt.

An application of Remark 2.8 shows that the resulting random variable X : Ω → γ(L2(0, T ;H), E)
is strongly measurable. This proves (2).

(3)⇒(1): This may be proved in the same way as Theorem 3.6, this time using Theorem 5.5.
(1)⇒(2): This is clear.
(2)⇒(1): It follows from Proposition 5.8 that ζ ∈ M c,loc

0 (Ω;E). Let (τn)n>1 be a localizing
sequence such that each ζτn is bounded. It follows from the assumptions and Facts 5.7 that for all
n and all x∗ ∈ E∗ we have

〈ζτn , x∗〉 =
∫ ·

0

1[0,τn](t)Φ∗(t)x∗ dWH(t) almost surely.

By the Burkholder-Davis-Gundy inequalities, each 1[0,τn]Φ is scalarly in L2(Ω;L2(0, T ;H)). In
particular,

〈ζτn
, x∗〉 =

∫ T

0

1[0,τn](t)Φ∗(t)x∗ dWH(t) in L2(Ω).

By Theorem 3.6, each 1[0,τn]Φ is L2-stochastically integrable with integral ζτn
. With Theorem 3.6

we find elementary adapted processes (Φn)n>1 such that∥∥∥ζτn −
∫ T

0

Φn(t) dWH(t)
∥∥∥

L2(Ω;E)
<

1
n
.

Doob’s maximal inequality implies that∥∥∥ζτn −
∫ ·

0

Φn(t) dWH(t)
∥∥∥

L2(Ω;C([0,T ];E))
6

2
n
.
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It follows that∥∥∥ζ − ∫ ·

0

Φn(t) dWH(t)
∥∥∥

L0(Ω;C([0,T ];E))

6 ‖ζ − ζτn‖L0(Ω;C([0,T ];E)) +
∥∥∥ζτn −

∫ ·

0

Φn(t) dWH(t)
∥∥∥

L0(Ω;C([0,T ];E))

6 ‖ζ − ζτn‖L0(Ω;C([0,T ];E)) +
2
n
.

The latter clearly converges to 0 as n tends to infinity. This gives (ii). Now choose x∗ ∈ E∗

arbitrary. In view of∫ ·

0

Φ∗(t)x∗ dWH(t) = lim
n→∞

∫ ·

0

Φ∗n(t)x∗ dWH(t) in L0(Ω;C([0, T ]))

from [18, Proposition 17.6] we obtain (i). �

Remark 5.11. As was the case in Remark 3.8, if the filtration F is assumed to be the augmented
Brownian filtration FWH

T , then the equivalence (1)⇔(2) is true for every real Banach space E.
This may be proved by a stopping time argument as in the proof of (2)⇒(1).

Our next objective is a generalization Theorem 4.4.

Theorem 5.12 (Burkholder–Davis–Gundy inequalities). Let E be a UMD space and fix p ∈ (1,∞).
If Φ : [0, T ] × Ω → L (H,E) is H-strongly measurable and adapted and stochastically integrable,
then

E sup
t∈[0,T ]

∥∥∥∫ t

0

Φ(s) dWH(s)
∥∥∥p

hp,E E‖X‖p
γ(L2(0,T ;H),E),

where X ∈ L0
F(Ω; γ(L2(0, T ;H), E)) is the element represented by Φ.

This is understood in the sense that the left-hand side is finite if and only if the right-hand side
is finite, in which case the estimates hold with constants only depending on p and E.

Proof. First assume that the left-hand side is finite. Define a sequence of stopping times (τn)n>1

by
τn = inf{t ∈ [0, T ] : ‖ξX(t)‖γ(L2(0,T ;H),E) > n}.

Observe that ξX(τn) ∈ Lp
F(Ω; γ(L2(0, T ;H), E)) and that it is represented by Φ1[0,τn]. From

Theorem 3.6 we deduce that Φ1[0,τn] is Lp-stochastically integrable. Combining the identity∫ τn

0

Φ(t) dWH(t) =
∫ T

0

1[0,τn](t)Φ(t) dWH(t)

which follows for instance from Theorem 5.9(1), with the dominated convergence theorem (here
we use the assumption) and Fatou’s lemma, we obtain

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

= lim
n→∞

E
∥∥∥∫ T

0

1[0,τn](t)Φ(t) dWH(t)
∥∥∥p

hp,E lim inf ‖ξX(τn)‖p
Lp(Ω;γ(L2(0,T ;H),E)) > ‖X‖p

Lp(Ω;γ(L2(0,T ;H),E)).

This shows that X ∈ Lp(Ω; γ(L2(0, T ;H), E)), and by Theorem 3.6 that Φ is Lp-stochastically
integrable. The result now follows from Theorem 4.4.

If the right-hand side is finite, then Φ is Lp-stochastically integrable by Theorem 3.6 and there-
fore the left-hand side is finite by Theorem 4.4. �

In the real-valued case, a similar estimates holds for all 0 < p < ∞. We do not know whether
Theorem 5.12 extends to all 0 < p <∞ (or even just to p = 1).

We have the following extension of Itô’s representation theorem for Brownian martingales to
UMD Banach spaces.



28 J.M.A.M. VAN NEERVEN, M.C. VERAAR, AND L. WEIS

Theorem 5.13 (Representation of UMD-valued Brownian local martingales). Let E be a UMD
space. Then every E-valued local martingale M := (Mt)t∈[0,T ] adapted to the augmented filtration
FWH has a continuous version and there exists a unique X ∈ L0

F(Ω; γ(L2(0, T ;H), E)) such that

M = M0 + IWH (ξX).

Proof. We may assume M0 = 0. By Theorem 5.5 it suffices to show that M has a continuous
version. This can be seen in the same way as in the real case (cf. [18, Theorem 18.10]). �

For UMD spaces E with cotype 2 recall that γ(L2(0, T ;H), E) ↪→ L2(0, T ; γ(H,E)). Hence
every X ∈ L0(Ω; γ(L2(0, T ), E)) can be represented by a process Φ ∈ L0(Ω;L2(0, T ; γ(H,E))). In
this case, the above representation takes the form

M = M0 +
∫ (·)

0

Φ(t) dWH(t).

For M -type 2 Banach spaces E, a representation theorem for martingales as stochastic integrals
with respect to H-cylindrical Brownian motions can be found in [31, Chapter 2].
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